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Abstract

Whereas many approaches, that use convolutional neural networks, are designed assuming all
training data is available at training time, in many real-life scenarios this is not the case. Ex-
amples of this are web search or facial recognition. They cannot use a fixed model because the
number of categories (or objects) keeps growing or changing. This type of learning is called
on-line learning. The data becomes available over time and the system learns gradually. The
more restricted version of this is called incremental learning. These types of learning have their
challenges. For example, it has to be able to create a reliable model at each time step and it does
not know in advance what the data will look like in the future or how it changes during the
training.

In the literature, there is much work available for this problem in neural networks, but not
much in convolutional neural networks. The literature we found in our research shows, that the
approaches that use convolutional neural networks are using fine-tuning, are boosting based or
are a combination of both.

In this work, we propose three main approaches: a fine-tuning approach, combining convo-
lutional neural networks and a boosting based method. We compared several setups of these
approaches in our experiments. Our results show that all the approaches have trouble retaining
old information when no images of these classes are available at the current time. From these
results, we conclude that none of our proposed approaches work well in an incremental envi-
ronment. The accuracies improve a lot when only a subset of the images of the class remain
available. The best results have the fine-tune and boosting-based methods. However, these ap-
proaches are not ready to work in a real-life environment yet. More research is needed for that.
This work is a good starting point for more research.
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Chapter 1

Introduction
Many approaches using convolutional neural networks assume that all data is available at train-
ing time. In real-life, that is not always the case. Data becomes available over time in those cases.
This type of learning is called on-line learning.

Real-life examples of this type of learning are among others web search, facial recognition, and
medical classifications. In web search, one could think of a search engine. Websites change all
the time. A fixed model would not be able to handle this. It is outdated once websites change.
After some time results of the model do not reflect the current environment anymore. In facial
recognition, an image library can change all the time. In a library are new images added and
others are removed. This means that any time new faces can appear and others disappear.
More images of already learned faces can be added and a face can also change over time. A
fixed model will not be able to handle this without fully retraining it. In medical classification,
an example is images of a disease and using that to automatically recognizing this in images
from patients. This system could use the opportunity of getting constantly new data in order to
improve its accuracy.

1.1 Defining Incremental Learning
Traditionally, in machine learning, models are trained when all training data is available. This
means, that the full data set is available when training is started. The majority of algorithms,
that use convolutional neural networks, work with this principle. However, in many real-life
applications, not all data is available at the start of the training. The data might become available
in small batches or one-by-one over time. This type of learning has many names: incremental
learning, on-line learning, life-long learning and more. There are no clear overall definitions
of these terms. The definitions vary among papers. In this section, we give a compilation of
definitions used in the literature. Later in Section 2.1, we give an overview of the definitions we
use in this work.

First of all, the difference between on-line and incremental learning is explained in work by A.
Gepperth and B. Hammer [1]. They define on-line learning (sometimes written as online without
a hyphen) were examples or data arrives over time as described above and the full data set is
not available at the start of training. The system does not know the total number of examples
in advance. Incremental learning is in [1] defined as a more restrictive form of on-line learning.
Incremental learning methods have limited memory resources. Algorithms that store all arriving
data cannot be used in an incremental environment. This means an incremental approach has
no access to previously trained images.

In a paper by C. Giraud-Carrier [2] are formal definitions of incremental learning and incremen-
tal learning algorithms given. These definitions can be found in Definition 1.1 and Definition
1.2. Compared to the definition of on-line and incremental learning in [1], Definition 1.1 is more
describing on-line learning in general instead of incremental learning as defined [1].

Definition 1.1. A learning task is incremental if the training examples used to solve it become
available over time, usually one at a time.

1



2 Chapter 1. Introduction

Definition 1.2. A learning algorithm is incremental if, for any given training sample x1, . . . , xn,
it produces a sequence of hypotheses h0, h1, . . . , hn, such that hi+1 depends only on hi and the
current sample xi.

There are several other terms used as well. Examples of these are life-long learning or data
stream learning. Life-long learning [3], as its name already expresses is learning the whole lifespan
of a system. This is sometimes also called continuous learning [4]. These two terms are similar
to the term on-line learning as defined in [1]. Data stream learning [5] is learning from a data
stream. It is seen as an on-line or incremental learning approach where the examples arrive at a
fast pace. The system has a limited time to process them.

In the paper by R. Ade and P. Deshmukh [6], are five criteria mentioned that an algorithm
should meet to be called an incremental algorithm. Variants on these criteria can be found in
other papers as well. The criteria stated in [6] for algorithms are:

1. It will be able to learn and update with every new data - labeled or unlabeled,

2. It will preserve previously acquired knowledge,

3. It should not require access to the original data,

4. It will generate a new class or cluster when required. It will divide or merge clusters as
needed, and

5. It will be dynamic in nature with the changing in environment.

1.2 Challenges in Incremental Learning
On-line and incremental learning approaches face several challenges and problems. These chal-
lenges are in the work by A. Gepperth and B. Hammer [1] described. The challenges describe
among others reasons why traditional algorithms do not work in an on-line or incremental en-
vironment.

The first challenge explained in [1] is online model parameter adaption. This challenge is basically
the task to create a reliable model, Mt, after each step, t, based on the new sample(s) and the
model from the previous step, Mt−1. The method should work without knowing the number
of samples and steps in advance. This challenge is related to Definition 1.2. It is describing the
working of an on-line learning algorithm.

The second one described in [1], is called concept drift. This challenge means the changes in data
statistics of the distribution of the structure of the data samples over time. There are two types
of concept drift. The first one, virtual or covariate concept drift, is the changes in the distribution
of the input samples. This means the samples of a class change. The latter one, real concept drift,
is the change in the underlying functionality of the sample. This means for example that some
images that had label A at step ta, later at step tb have label B. Real concept drift is a problem
since it leads to conflict in classification. It has an impact on the classification performance of
the model until it is adapted to the changed environment.

The survey by J. Gama et al. [7] describes concept drift in more detail. It starts with distinguish-
ing on-line and off-line learning. It defines off-line learning as learning where the whole training
data is available at the time of model training. When training is finished the model can be used
for prediction. In contrast, an on-line learning algorithm processes data sequentially and the
model should be able to be in operation without having training completed. Training might
never finish. The model is continuously updated when new training samples arrive. The paper
defines an incremental algorithm as less restrictive as an online one. They process input exam-
ples one-by-one or batch-by-batch and update their model after each step. The paper continues
by defining concept drift. This definition is shown in Definition 1.3.



1.2. Challenges in Incremental Learning 3

Definition 1.3. Concept drift can be defined, between time point t0 and t1, as ∃x : pt0(x, y) 6=
pt1(x, y), where pt0 denotes the joint distribution at time t0 between the set of input variables x
and the target variable y.

The paper distinguishes three three types of concept drift: real concept drift, and virtual concept
drift as described earlier and population drift. In population drift, the population in which future
samples will be drawn at test time is different compared to the population on which is trained.
According to [7] the drift can happen in several ways. First of all, it can happen suddenly/abruptly.
It changes in that situation abruptly from one to another concept. The drift can also happen
incrementally. An incremental drift has many intermediate stages. Another way drift happens
is gradual. A gradual drift switches some time between the old and new concept before finally
staying with the new one. The drift can also be temporary: it changes to a new concept, but later
it changes back to the old one. The challenge in concept drift is detecting it and distinguishing
it from outliers or noise because that refers to once-off random deviation or anomaly.

The next challenge in the paper [1], but also mentioned in other papers such as from R. Polikar
et al. [8], is known as the stability-plasticity dilemma. One can slowly update the model when
new data arrives. This way you have slow adaption to a new environment and old information
is longer retained. Methods doing this are called stable methods: learn slow, but conserve old
knowledge longer. One problem, most stable models on this side of the spectrum have, is
that they do not learn at all. The opposite of this is to quickly update the model after new
data arrives. This way there is a rapid adaption to a new environment, but old information is
forgotten faster as well. Methods like this are called plastic: fast learning, but no conserving
of old data. This dilemma is a well-known constraint in artificial as well as biological learning
systems. The plasticity extreme of the dilemma is also called catastrophic forgetting. The dilemma
has been described well in a paper by M. Mermillod, A.Bugaiska and P. Bonin [9]. The problem of
catastrophic forgetting in neural networks has been described in among others by R. French [10]
and I. Goodfellow et al. [11]. The paper [9] gives an overview of the dilemma as well as an
overview of research into it.

The fourth challenge described in [1] is called adaptive model complexity and meta-parameters. This
means that on one side that complexity of the model must be variable because the complexity is
impossible to determine in advance. It might be even necessary for the method to have a variable
model complexity depending on the occurrence of concept drift. However, on the other side is
the complexity of the model limited by the available resources. This requires such a model to
have intelligent resource allocation when the limit is reached. In batch learning, meta-parameters
such as learning rate and regularization are determined prior to learning. Since the incremental
nature, this is not suited for incremental learning methods. These methods tend to use few and
robust meta-parameters or use meta-heuristics to adapt their quantities during training.

The next challenge in [1] is efficient memory models. Incremental methods need to store infor-
mation provided by observed data in a compact form due to their limited available resources.
Methods to do this are via suitable system invariants, the model parameters in implicit form or
via an explicit memory model. For incremental algorithms is a careful memory adaption design
crucial, because it mirrors the stability-plasticity dilemma.

The last challenge described in [1] is model bench-marking. This challenge is essentially how
to benchmark a model M. Two possibilities exist to benchmark the performance. These are
incremental versus non-incremental and incremental versus incremental. The first one is used when
there is no concept drift and the data distribution is stationary. The incremental method is
compared to a batch algorithm. However, due to its streaming data access, the incremental
method has restricted knowledge. In the latter possibility, two or more incremental algorithms
are compared. This is when concept drift is faced. Such a setting can, for example, be used to
compare different constant function or to compare the robustness of the models.
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1.3 Image Classification
In this work, we research incremental and on-line learning on the image classification problem.
In image classification, we want to classify the object of the image. This is a trivial problem in
a large number of applications. Some examples of image classification are among others image
search in an image database and processing and identifying objects on satellite images. In the
first example application, there is a database containing images. The system searches through
this database to obtain images with particular visual content. There are satellite images involved
in the second example. In this application, the system needs to classify what the objects on the
image or sub-image are.

Classifying images by hand is possible and the human brain is fast in detecting the subject of the
image. However, it is not possible to keep up with the amount of work to be done. Also, letting
humans search through a database containing millions or maybe even billions of images is too
slow. Computers are fast and do not get tired. However, a computer ‘sees’ the image just as a
sequence of bits. It needs some kind of method to classify them. Convolutional neural networks
are one family of approaches that can do this.

1.4 This work
In this work, we will do research into on-line and incremental learning. Most current methods
using convolutional neural networks are not designed to work in an on-line environment. Many
real-life environments are on-line or even incremental environments. Also, very few research has
been done for CNN in these types of learning. This means only a few approaches are available
at this time.

Our main research question is: “How can we do on-line and incremental learning by using
convolutional neural networks?”. For this work, we can break down this question into several
sub-questions. These are:

• What approaches have been proposed and used in neural networks and convolutional
neural networks in the past?

• In what ways can we learn in an on-line or incremental environment with a convolutional
neural network?

• Which of these approaches works best?

The aim of this work is however not to find the best on-line or incremental approach that uses
CNN’s. It is more an exploratory work in this field. It gives an in-depth literature research
into on-line and incremental learning in neural networks and convolutional neural network.
It explores and implements several approaches using CNN’s. And finally, it compares these
approaches in several experiments.

In the literature research, we show that there has been done a lot of research in incremental
learning in neural networks. However, very little research has been done on convolutional neural
networks. Current approaches using CNN’s in an incremental environment can be grouped in
fine-tuning methods and boosting-based methods.

The knowledge we got from the literature research is used to design three main approaches.
These main approaches, we propose, are a fine-tuning approach, one that combines CNN’s and
a boosting-based approach. The fine-tune approach is the simplest of the three. We can do that
approach in two ways: have a large initial CNN or add nodes when new classes arrive. The
approach that combines CNN’s creates a new CNN each time new data arrives. At test time
these CNN’s are combined to create a final prediction. This happens in parallel or in series. The
boosting-based method uses AdaBoost and the CNN as weak-learner.
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In the experiments, we compare several setups of these approaches. We also compare several
procedures of fine-tuning a CNN in an incremental environment and two ways we can update
our boosting classifier.

1.5 Thesis Overview
This work will continue with a preliminary chapter in Chapter 2 to give some background
information on the rest of this work. The preliminaries are followed by a review of classic and
recent literature in incremental learning in neural networks and convolutional neural network in
Chapter 3. We continue with explaining our approaches in Chapter 4 followed by Chapter 5 with
the experiments we did with these approaches. After the Experiments follow the Conclusion in
Chapter 7. Finally, we end with Future Work in Chapter 8.



Chapter 2

Preliminaries
This chapter provides background information for the remainder of the thesis. It starts with
some definitions and an overview of parameters. Next, it will give an introduction to neural
networks, convolutional neural networks and boosting.

2.1 Definitions
In the Introduction, we introduced some terms and their definitions among literature. We will
give in this section the definitions that we use. Traditional learning where all training data is
from the start available is off-line learning. In this type of learning, we do not have to take into
account whether data changes or how much data we get. On the other hand, is in on-line learning
unknown how data will look like in the future or how much data the system will get. The data
in such an environment arrives over time during the training. We see incremental learning as a
restricted version of on-line learning. Where an on-line learning algorithm could just store all
previously seen data, an incremental algorithm has limited storage and cannot do that.

2.2 Overview of Used Symbols
In this work, a number of symbols are used in equations and algorithms. The used symbols vary
among literature. We tried to use as much as possible the same symbol for the same meaning
in different equations and algorithms. The overview of the symbols is shown in Table 2.1. Some
symbols are left out of this overview. These symbols are ones that are used just in a single
equation of algorithm. Also, some symbols have a different meaning in a different context.
Their exact meaning in an equation of algorithm is explained in the text near it.

2.3 Neural Network
A neural network is an artificial neural network inspired by its biological equivalents. It is used to
estimate or approximate functions. It has similar to other machine learning methods a learning
phase where the parameters of the model are trained before it can be used to predict. One
of the earliest work into neural networks is an article by W. McCulloch and W. Pitts [12] in
1943. In the years and decades after this work were the perceptron, by F. Rosenblatt [13], and
backpropagation, by P. Werbos [14], proposed. The explanation in the rest of this section is based
on the book about neural networks and how to do deep learning with them by M. Nielsen [15].

A neural network consists of neurons. The perceptron, as proposed by by F. Rosenblatt [13], is
the most basic neuron. The allowed input, as well as the generated output of the perceptron, is
binary, so either 0 or 1. Each input xi has a weight αi. The output is 1, if ∑i αixi is greater or
equal to some threshold value. If it is smaller, the output is 0. This is shown in Equation 2.1. A
visualization of the perceptron is shown in Figure 2.1(a).

output =

{
0 if ∑j αjxj < threshold
1 if ∑j αjxj ≥ threshold (2.1)

A more complex type of neuron is the sigmoid neuron. This type neuron allows real value inputs
between 0 and 1. Each input xi of the sigmoid has, just like the perceptron, a weight wi. In

6



2.3. Neural Network 7

Symbol Meaning
x Input, sample, data point, image
x Set of inputs
X Space of inputs (x ∈ X)
y Label, target variable
y Set of labels
Y Space of labels (y ∈ Y)
t Iterator for time, step, iterations
T Total time, total number of steps, total number of iterations
w Weight of input
w Set of weights
α Weight of node
i Counter, iterator
j Counter, iterator
b Bias
h Hypothesis (boosting)
H Set of hypotheses (boosting)
o Output
σ Sigmoid function
n Layer number, kernel number
N Number of layers, number of kernels, number of images (Nx)
s Stride, step size, data set (training set Sl , test set Sv)
p Padding

W Size image
M Number of feature maps, number of Models
m Model, feature map
p Distribution, normalized distribution
ε Error
β Normalized error
k Kernel
f Filter

y′ Prediction
c Classifier
C Set of classifiers

Table 2.1: Overview of most of the used symbols in this work. The symbols that are left out are mainly in
a single equation or algorithm. Meaning of symbols with multiple meanings depends on context

contrast to the perceptron, has the sigmoid neuron an overall bias. The output generated by the
weighted inputs plus the overall bias is shown in Equation 2.2,

σ(z) ≡ 1
1 + e−z ≡

1
1 + exp(−∑j αjxj − b)

, (2.2)

where σ(z) = σ(α · x + b). A visualization of the perceptron is shown in Figure 2.1(b).

In a neural network are these and other types of neurons used. In Figure 2.2 is a simple neural
network shown. This network has three layers. The left-most layer is called the input layer. This
is a very simple layer. Each neuron in this layer receives an input value and redirects it to its
output without manipulating it. The middle layer is called a hidden layer. The hidden middle
layer contains the sigmoid, perceptron or other types of neurons. At the end, the right-most
layer is the output layer. This is the output of the neural network. The neurons in this layer
either say true or false depending on the criterion they are set on. However, they can also do the
final calculation and output the probability that their criterion is true based on the output of the
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Activation
function

∑

α2x2

...
...

αnxn

α1x1

Inputs Weights

(a)

Activation
function

∑

α2x2

...
...

αnxn

α1x1

Inputs Weights

b

(b)

Figure 2.1: Example of the perceptron, (a), and sigmoid neuron, (b). Both neurons have inputs x1 to xn.
Each input has a weight wi. The sigmoid neuron also has a overall bias b.

last function. This probability is usually a value between 0 and 1. This network is this example
has two input, three hidden and one output neuron.

i1

i2

h1

h2

h3

o

Hidden layerInput layer Output layer

Figure 2.2: Example of a simple neural network. It has two input, three hidden and one output layer.

The neural network in Figure 2.2 is called a single-layer network. A neural network can have
more than one hidden layer. One type of such networks is called multi-layer perceptrons (MLPs).
Both these types of networks are feed-forward neural networks, which means that there are no
loops in the network.

2.4 Convolutional Neural Network
A more complex form of neural networks is the convolutional neural network (CNN). CNN’s are
designed for image and video recognition. A CNN uses a combination of different types of
layers such as convolutional and sampling/pooling layer. In this section a basic explanation of
CNN’s is based on the book by M. Nielsen [15] and papers by D. Ciresan et al [16], A. Giusti [17]
and D. Scherer at al. [18].

2.4.1 Convolutional Layer
The convolutional layer of a convolutional neural network is one of the main type of layers in a
CNN. This layer is in contrast to the layers in a neural network are not fully connected. It gets an
image or a feature map from a previous layer as input. The layer has small groups or collections
of neurons. These groups of neurons are called kernels. The behavior is defined among others by
the kernel size, number of maps and step sizes. Each layer has M maps of size mx ×my, where
mx is the size in the x-direction and my the size in the y-direction. To generate these maps a
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kernel of size kx × ky is shifted over the input ’image’. The step sizes sx and sy define how the
kernel is shifted in the x and y direction. The output maps of a given layer share their weights of
the kernel. Based on the input map size, mn−1

x ×mn−1
y , the kernel size, kn

x × kn
y , and step size, sn

x
and sn

y , of this convolutional layer, can the size of the output maps determined. This is defined
in Equation 2.3, where n indicates the layer number

mn
x =

mn−1
x − kn

x
sn

x + 1
+ 1; mn

y =
mn−1

y − kn
y

sn
y + 1

+ 1 (2.3)

The convolutional layers can make use of Rectified-Linear Unit (ReLU). It is an activation func-
tion defined as: f (x) = max(x, 0). It computes the output as x if x > 0 and 0 if x ≤ 0. They
can also use Local Response Normalization (LRN). That is used to normalize the output of the
ReLU. The normalized activity bi

x,y is given by the expression

bi
x,y = ai

x,y/

k + α
min(N−1,i+n/2)

∑
j=max(0,i−n/2)

(aj
x,y)

2

β

, (2.4)

where ai
x,y is the activity of kernel i at position (x, y) after applying ReLU, N the number of

kernels. The sum in the expression runs over n adjacent kernel maps at the same spatial position.
The constants k, n, α and β are hyper-parameters.

2.4.2 Pooling Layer
Some of the convolutional layers are followed by pooling layers. The pooling layers reduce the
resolution of feature maps generated by the convolutional layers. They aggregate a local neigh-
borhood. There are several pooling methods available for use in convolutional neural networks.
One of the most popular ones is maximum pooling. Some of the other pooling options are average
(or mean) pooling and stochastic pooling.

The pooling is done by using the fx× fy filter of the corresponding pooling method. These filters
are applied in combination with a certain stride. The stride is the ‘step-size’ of the filter. A stride
of 0 would mean that the filter stays forever at the same place. Using a stride of 2 causes the
filter to do steps of 2 in the y and x direction.

For example, assume we have a feature map of size 4× 4, a filter of 2× 2 and a stride of 2, then
we would have four places where the filter is applied. This is shown in Figure 2.3. The resulting
reduced feature map is reduced by a factor two and has a size of 2× 2.

Figure 2.3: Input feature map for feature pooling

In Equation 2.5 the output size of a filter is shown. In this equation is W the length of the input
image, k the size of the filter, p the padding and s the stride. Where padding is the number of
pixels added at each side of the image. If we would apply this to the feature map of Figure 2.3,
then the W is 4, k is 2, p is 0 and s is 2. When we use these number in Equation 2.5, we end up
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with (4− 2 + 0)/2 + 1 and thus a output size of 2.

o =
W − k + 2p

s
+ 1 (2.5)

One of the most popular filters is the maximum pooling filter. The maximum pooling filter
chooses the maximum value of the input for each pooling region. An example is shown of this
in Figure 2.4.

Figure 2.4: Example of maximum pooling. The maximum value of each region is chosen

Another pooling method, average pooling (also called average pooling), works in a similar way.
Instead of the maximum value, the mean of the pooling region is determined. The stochastic
pooling method is more complex one. It uses a distribution to randomly pick a value of each
pooling region.

2.4.3 Classification Layer
The final layers of a convolutional neural network are usually fully connected layers. These
layers are also called classification layers. The fully connected layers combine the feature maps
from the final convolutional or pooling layer into a one-dimensional vector. The final layer of
these fully connected layers outputs a vector containing the probability for each of the categories
in case of the classification problem.

An often used technique in fully connected layer (but not limited to this type of layers) is the
dropout. Dropout is a technique to reduce overfitting. One used strategy is the one proposed
in the paper by Krizhevsky et al. [19]. At training time, it sets the output of each neuron to
zero with a probability of 0.5. This reduces the amount of output data by half compared to the
amount it got at the input. It also reduces the computation time of following layers. During test
time no data is dropped, but the values of all neurons are multiplied by 0.5.

2.5 Boosting
Boosting is a general approach where many ‘weak’, inaccurate classifiers are combined to a
‘strong’, much more accurate classifier. One of the first boosting algorithms and one of the most
widely used is Adaptive Boosting, usually shortened as AdaBoost. AdaBoost was introduced by
Y. Freud and R. Schaphire in [20].

The algorithm has as input a training dataset Sk of N labeled examples Sk = {(x1, y1), . . . , (xN , yN)},
where xi is an item in some domain or instance space X and each label yi is in the label set Y.
Note that the version of AdaBoost presented in [20] is only designed for binary problems, thus
Y = {0, 1}. Also a weak-learner, referred to as WeakLearn, and a integer T, that specifies the
number of iterations that the algorithms runs or number of hypotheses generated, are given to
AdaBoost. At the start the weights w1 are initialized by w1

i = 1/N.

The first step, in each iteration t, is to generate a distribution pt by normalizing the weights wt.
Next, WeakLearn is called with dataset Sl and distribution pt to generate a hypothesis ht, ht:
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x→ {0, 1}. Based on the performance of hypothesis ht is a new weight vector wt+1 determined.
For this is first the error of ht determined,

εt =
N

∑
i=1

pt|ht(xi)− yi|.

With εt is the normalized error βt determined,

βt =
εt

(1− εt)
.

Finally, the new weights vector wt+1 is calculated with each as

wt+1
i = wt

i ∗ β
(
t1− |ht(xi)− yi|).

This procedure is repeated T times. At the end the final hypothesis h f is the weighted sum of
hypotheses h1 to hT . This is shown in Algorithm 1.

Algorithm 1 Regular AdaBoost

Input: Dataset Sl = {(x1, y1), . . . , (xN , yN)}, T specifying the number of iterations and weak
algorithm WeakLearn

Output: hypothesis h f

1: Initialize weight vector w1 with w1
i = 1

N for i ∈ [0, . . . , N]
2: for t = 1, . . . , T do
3: Normalize weights wt, pt = wt

∑N
i=1 wt

i

4: Call WeakLearn with pt and get back a hypothesis ht: X → {0,+1}
5: Calculate error of ht, εt = ∑N

i=1 pt
i |ht(xi)− yi|,

6: Determine normalized error, βt =
εt

(1−εt)

7: Calculate new weights, wt+1
i = wt

i ∗ β
(
t1− |ht(xi)− yi|)

8: end for

9: return the hypothesis h f (x) =

{
0 if ∑T

t=1(log 1
βt
)ht(x) ≥ 1

2 ∑T
t=1 log 1

βt
1 otherwise

As stated above, at the start all weights are set equally. In each iteration, AdaBoost adapts
adjusts the weights to the errors returned by WeakLearn. The procedure used to generate the
new weights wt+1, reduces the probability of examples that are predicted correctly by hypothesis
ht and increases the probability of examples that are incorrectly predicted by ht. The idea here
is that each iteration examples that are predicted incorrectly are more likely to be used during
training in the next iteration than correct predicted examples. This adaptive mechanism gives
AdaBoost its’ name, Adaptive Boosting. The boosting algorithm can use an algorithm that
can use the distribution pt on the training examples. This means that a neural network or
convolutional neural network can be used as weak-learner. One of the advantages of AdaBoost
is that it does not need any prior knowledge of the performance of the used weak-learner.

The final hypothesis h f in Algorithm 1 is decided by majority voting. Each test sample is pre-
dicted by all weak-learners. All normalized weights of the weak-learners are summed as shown
in step 9 if the weak-learner returns 1. If this is larger than half of the total weights, then the
final prediction is 0, otherwise, it is 1.



Chapter 3

Literature Review
This chapter is a review of classical and recent work in incremental learning in neural networks
and convolutional neural networks.

3.1 Neural Network
A lot of research has been done in on-line and incremental learning in neural networks. In Sec-
tion 1.2, we described the stability-plasticity dilemma and catastrophic forgetting in incremental
learning. A paper by R. French [10], published in 1999, goes into more detail for that for con-
nectionist networks, another term for neural networks. They examine the causes, consequences
and a number of solutions for the problem of catastrophic forgetting in neural networks.

All approaches for on-line and incremental learning in neural networks have to deal with these
challenges. In this section, we will go into more detail of some types of approaches. The types
we will describe are Adaptive Resonance Theory (ART) based methods, boosting based methods,
radial basis function (RBF) based methods and self-organizing neural networks (SOINN). At the end
of the section, we also show some other methods.

3.1.1 Adaptive Resonance Theory Based Algorithms
The Adaptive Resonance Theory (ART) is introduced by S. Grossberg in 1976 [21]. He describes it
as a cognitive and neural theory of how the brain autonomously learns to categorize, recognize,
and predict objects and events in a changing world. In [22] by Grossberg ART is explained in
detail and in a 2013 paper [23] he gives a review of ARTs’ classical and recent developments.

Based on ART are a variety of neural network models developed. The first one, ART 1, was
introduced by G. Carpenter and S. Grossberg in 1987 [24]. It is an unsupervised approach
and only accepts binary input. ART 2 [25] extends ART 1 by also accepting analog data. The
performance improvement in terms of speed was realized with ART 2-A in 1991 [26].

ARTMAP or Predictive ART is a supervised learning system by G. Carpenter, S. Grossberg and
J. Reynolds [27]. It is a type of self-organizing expert system and it is designed for on-line
recognition learning, thesis testing and, adaptive naming in response to an arbitrary stream of
inputs. ARTMAP consists of two ART modules, ARTa and ARTb. These modules are ART 1

modules with some additions, but they can be of any type of ART module. The ARTa and
ARTb read respectively input [a(p)], a stream of inputs, and [b(p)], a stream labels given [a(p)].
In between the two ART modules is an inter-ART module, the Map Field. This controls the
learning of an associative map from ARTa recognition categories to the ARTb categories.

In [28] by G. Carpenter et al. is ARTMAP extended by describing the ARTMAP dynamics in
terms of the fuzzy set-theoretic operations. This method is called Fuzzy ARTMAP. Fuzzy sets
were introduced by L. Zadeh in 1965 [29]. In classical set theory, an object either belongs or not
belongs to a set. In a fuzzy set does the object have a grade of membership, which is a value
between 0 and 1. The ART modules in ARTMAP are in the fuzzy variant replaced by Fuzzy ART
systems. In ARTMAP leads fast learning typically to different adaptive weights and recognition
categories for different orderings of the training set. The fuzzy variant has a voting strategy
introduced to prevent that. This based on an ARTMAP system. This system is trained on input
sets with different orderings. In a later paper by G. Carpenter et al. [30] is a new method based

12
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on the fuzzy ARTMAP introduced. The method is developed for automatic mapping of Landsat
Thematic Mapper (TM) and terrain data; a remote sensing classification problem.

Another Fuzzy based ART system is Fuzzy ART by G. Carpenter, S. Grossberg and D. Rosen [31].
This method introduces Fuzzy set theory in the ART 1 modules. The ART 1 dynamics are in a
similar way replaced as in Fuzzy ARTMAP. By introducing fuzzy theory into ART, the system
can learn from binary as well as analog input. An implementation of this method is given in the
paper [32] by the same writers.

In a paper by J. Williamson is the Gaussian ARTMAP [33] introduced. It is an incremental
learning system for learning supervised learning of analog multidimensional maps. The system
combines a Gaussian classifier with an ART neural network. It uses the ART choice function as
the discriminant function for the Gaussian classifier.

3.1.2 Boosting Based Approaches
Learn++ was introduced by R. Polikar et al in 2000/2001 [8, 34]. It is a supervised learning
method for neural networks such as multilayer perceptrons (MLP). According to the writers, it
learns new data, including new classes, without forgetting previously learned information. The
method is inspired by Schapire’s AdaBoost [20]. It has two key components. The first one is
the selection of the subsequent data set. This is based on generating a number of hypotheses
using different distributions of the training data. This is a weak learner. Whereas AdaBoost
depends on the performance of individual hypothesis ht, is Learn++ using the performance the
overall hypotheses set Ht. The second key component is the way the individual hypotheses are
combined. Learn++ uses weighted majority voting to do this.

Based on Learn++ are a variety of new methods developed, which improve or extend it. Learn++.MT
by M. Muhlbaier, A. Topalis and R. Polikar [35] is a modified version of Learn++. In [35] the “out-
voting” problem of Learn++ is described. The original method works for most applications, but
in incremental learning problem where new classes are introduced introduce the ”out-voting”
problem. This means that in the majority voting the new class is in disadvantage compared to
the original classes. A new class needs a relatively large number of classifiers so their weight can
”out-vote” the classifiers from earlier batches. Learn++.MT uses a different principle to deter-
mine the weights. This principle is based on a cross-reference of the classes that have been seen
by each classifier during training. During test time the algorithm can dynamically adjust the
voting weights for each test sample. The algorithm has a reduced number of classifiers which
also improve the performance.

Another approach to solving the “out-voting” problem is Learn++.NC by M. Muhlbaier, A.
Topalis, and R. Polikar [36]. It is designed to efficiently learning of multiple new classes (NC).
According to the writers does Learn++.NC improve performance and stability compared to its
predecessor. It uses substantially fewer classifiers than its predecessor. Its’ main feature is a
new voting mechanism. The method treats its’ individual classifiers as intelligent experts. The
experts consult with each other and together determine which classifiers have more confidence
in identifying a given sample. Then, the voting weights are dynamically set. There is, however,
a throwback of Learn++.NC. It cannot handle concept drift problems.

A member that combines ideas from other members of the Learn++ family is Learn++.UDNC by
G. Ditzler, M. Muhlbaier and R. Polikar [37]. Learn++.UDNC combines ideas from Learn++.UD
[38] and Learn++.NC [36]. Learn++.UD was introduced by M. Muhlbaier, A. Topalis, and R. Po-
likar for learning unbalanced data. However, it was not able to learn new classes. Learn++.UD
combines algorithms from Learn++.UD and Learn++.NC such as a class-specific weighing method
and normalized preliminary confidence measures. The methods also include a transfer function
that is used reducing the confidence bias of a group of samples that is trained on a majority
class.
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Learn++.NSE by R. Elwell and R. Polikar [39] is a Learn++ based method for incremental learning
of concept drift, that is characterized by non-stationary environments (NSEs). The method can
learn in environments that experience constant or variable rate of drift, addition or deletion of
concept classes and also cyclical drift. It learns in batches without making assumptions about
the nature or rate of drift. Learn++.NSE makes use of current and past classifiers and combines
that with dynamically updated voting weights. These weight updates are based on their time
adjusted errors in past and current environments.

Learn++ has also been used in different learning methods. In a paper by D. Medera and S.
Babinec [40] is Learn++ used in a convolutional neural network. They state that the error rate
achieved by their approach was comparable with non-incremental learning. However, they state
as well that some issues remain for further research.

3.1.3 Self-Organizing Neural Network
Self-organizing neural networks were proposed by D. Willshaw and C. von der Malsburg [41]
and the principle was later generalized by T. Kohonen [42]. This principle is also called self-
organizing maps. In [41] the idea consists of two two-dimensional sheets representing the pre-
synaptic and post-synaptic sheet of nerve cells. Axons represent connections between the pre-
and post-synaptic sheet. These axons are a mapping between the nodes. Over sufficient training
time, these connections spread out over the post-synaptic sheet and gradually narrow down to
clusters. Each cluster represents a class of samples.

In the papers [42] and [43] by T. Kohonen is the idea and working of the method is explained
in more detail. The method is an unsupervised learning method. The map is a one- or two-
dimensional order of neurons. Each neuron has a 2D or 3D position in space. During training
the position changes, but the relative position of neighboring neurons remains the same. Every
neuron has a weight wi for each input xi, where i ∈ 1, . . . , N. The output of the neuron is
f (∑N

i=1 wixi). The weights are different for each neuron. The training of the self-organizing map
consists of four steps: 1. initialization, 2. sampling, 3. matching and 4. updating. The neurons are
initialized with small random weights. In the second step, one of the input samples is drawn.
Then the neuron that is the closest to input sample based on its weights is matched. A measure
such as Euclidean distance can be used. The neuron with the smallest distance wins. To update
the model, the winning neurons and its neighbors are moved towards the input sample. The
steps 2 to 4 are repeated until some condition (e.g. iteration limit) is met. A cooling schedule is
used in the adaption step.

The problem with the method described above is how to choose a suitable network size and
shape in advance, especially in an incremental environment. A solution is described in a paper
by B. Fritzke [44]. The paper describes two variants of a self-organizing network that has the
ability to find the suitable network structure and size. The first variant performs unsupervised
learning and grows until a performance criterion is met. A system is used to determine where
to add new neurons and to find ones that are superfluous. The second variant combines the
self-organizing network with a radial basis function (RBF; described in section 3.1.4) approach.
The number, diameter, and position of RBF units are determined automatically. The positioning
of the RBF units and the supervised training of the network are done in parallel. The current
classification error is used to determine the locations of new RBF units.

The self-organizing incremental neural network (SOINN) is introduced in a paper by S. Furao and
O. Hasegawa [45]. It is a two-layered network with a topological structure of the input pattern
as the first layer and prototypical nodes of the clusters as the second layer. The algorithm
described in [45] adds and removes edges based on the Hebbian rule. To summarize, it connects
two closest nodes for each input signal and it removes a connection that has not been refreshed
recently. Nodes are removed to separate low-density overlap clusters and nodes are added when
after removing edges the number of inputs signals becomes higher than a certain condition.
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However, a utility parameter is used to halt the insertion of nodes to prevent overfitting.

The enhanced self-organizing incremental neural network (ESOINN) is proposed by S. Furao, T.
Ogura and O. Hasegawa [46]. It enhances SOINN by using just one instead of two-layer and
making it more stable for on-line learning. In contrast to SOINN, it can also separate clusters
with high-density overlap and it only inserts between-class nodes to realize incremental learning.
The method uses fewer parameters compared to SOINN as well.

In 2008, presented S. Furao and O. Hasegawa the adjusted SOINN classifier (ASC) [47]. This
SOINN based method is in contrast to SOINN designed for supervised learning. By using
an adaptive similarity threshold, the system can grow incrementally and accommodate input
patterns of the incremental data distribution. It deletes the within-class nodes to reduce the
number of parameters compared to SOINN. The method can also reduce prototypes that are
caused by noise in the data.

Another addition to the SOINN family was done in 2010/11 by S. Furao, H. Yu and K. Sakurai
[48]. It is an extension of SOINN. The method is semi-supervised, meaning it can learn labeled
and unlabeled samples. Compared to SOINN it has only one layer. It labels ‘teacher’ nodes
and uses them to label all unlabeled nodes. The algorithm does not require knowledge of the
number of nodes or classes in advance.

3.1.4 Radial Basis Function
The Radial Basis Function (RBF) is a function whose real-valued value depends on the distance to
a center point y. As explained by M. Buhmann in [49], the function uses the Euclidean distance
in q-dimensional Euclidean space. The standard radial function approximation is defined as,

φ(x, y) = φ(||x− y||), (3.1)

where x ∈ Rq. The radial basis function is often used in function approximations. The problem
for such an approximation is described in a paper by D. Broomhead and D. Lowe [50] as in
Definition 3.1.

Definition 3.1. Given a set of N distinct vectors (data points), xi with i = {1, 2, . . . , N} in Rq

and N real numbers fi with i = {1, 2, . . . , N}, choose a function s : Rq → R which satisfies the
interpolation conditions: s(xi) = fi, i = {1, 2, . . . , N}

This function approximation s can be used in a network. A neural network using radial basis
functions is called radial basis function network. The RBF networks were introduced by D. Broom-
head and D. Lowe [50]. These networks are usually three-layer neural networks: an input layer,
a hidden layer, and an output layer. The function s for such the most basic RBF network looks
like

s(x) =
N

∑
i=1

αiφ(||x− yi||), (3.2)

where x are the data points or input of the network, φ(||x− yi||) the radial basis function in each
hidden node i and αi the weight for the hidden node i and with i = 1, 2, . . . , N.

We described in section 3.1.3 an incremental learning system by B. Fritzke [44]. The second vari-
ants of these SOINN use it in combination with a radial basis function. The number, diameter,
and position of these RBF units are automatically determined by the system. The radial basis
functions used in this network are slightly different from the one showed in Equation 3.2.
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In a paper by L. Bruzzone and D. Prieto [51], is an incremental learning radial basis function
network approach proposed. It is designed to primary requirements of a robust classifier for
remote-sensing images. The method uses a Gaussian RBF neural network. Each neuron in the
hidden layer has a Gaussian kernel function φ(.), characterized by a centre yi and a width σi.
The weighted summation of the output neurons for this network is given by

oj(xn) =
N

∑
i=1

αijφi(xn) + bj, (3.3)

where m is the number of hidden neurons, wij is the weight of the hidden neuron i and output
oj and bj is the bias for output oj. The method has a self-organizing architecture as well as an
adaptive structure.

Another RBF network approach was proposed by S. Ozawa et al. [52]. Their approach is a
combination of Incremental Principal Component Analysis (IPCA) and a Resource Allocating
Network with Long-Term Memory (RAN-LTM) from earlier work. The Resource Allocating
Network is an extension of the Radial Basis Function (RBF) in which the allocation of hidden
units is done automatically. The Long-Term Memory (LTM) is used to store items of input-output
data. These stored items are retrained with new data to suppress forgetting.

3.1.5 Other methods
The method proposed by B. Ans and S. Rousset [53] aims to suppress catastrophic forgetting
and reduce retroactive inference in gradient descent algorithms. The method uses a dual neural
network system. Information is transferred between the two networks, which differ in the num-
ber of hidden layers and layer sizes. By having two networks, one can retain information, while
the other has high ability to generalize.

A semi-supervised method is proposed by H. Al-Behadili et al. [54]. Their approach uses extreme
learning machine (ELM) and extreme value technique (EVT). Since the proposed method is
semi-supervised and semi-supervised methods are sensitive to false labels, EVT is used to detect
outliers.

3.2 Convolutional Neural Network
This section gives an overview of methods used for incremental learning in convolutional neural
networks. The work of V. Lomonaco and D. Maltoni [55] compares different learning strategies
for incremental learning for convolutional neural network based architectures for real-world
applications. As they mention, a naive approach to incremental learning would be to store all
seen data. Each time data arrives, from either already known classes or from new classes, this
approach would discard its’ current model and train a new model from scratch. In real-world
applications, this is not practical, because of limitations in memory and computational resources.
The solutions described in the paper are framed in three main strategies:

1. training/tuning an ad hoc CNN architecture suitable for the problem,

2. using an already trained CNN as a fixed feature extractor in conjunction with an incre-
mental classifier and

3. fine-tuning an already trained CNN.

They conclude their work that on-line and incremental learning are still scarcely studied in the
field of convolutional and deep neural networks. In the remainder of this section, we will go
into detail of several approaches applying these main strategies.
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3.2.1 Boosting Inspired Methods
A method, that is inspired by AdaBoost and Learn++, is introduced in a paper by D. Medera
and S. Babinec [40]. The CNN’s are used in this approach as weak-learners for the boosting
classifier. The CNN’s are kept simple and undersized or with a high error. In the incremental
phase, each time new data arrive, a certain number of new CNN’s are trained. All existing
CNN’s are fine-tuned on the new data.

In contrast to AdaBoost [56], [40] uses a distribution pt to divide the samples in a training and
test set for the CNN. Determining the error of hypothesis ht works the same as in AdaBoost: all
pt

i of the correct predicted samples are summed and then βt is calculated. However, hypothesis
ht is discarded when the error εt is larger than 1

2 . The composition of all hypotheses ht of all
previous t iterations, Ht, is generated by using majority voting,

Ht = arg maxt:ht(x)=y ∑
t:ht(x)=y

log
1
βt

.

The error of the hypothesis Ht determined by summing the pt
i of incorrectly predicted examples.

Here as well, the current ht is discarded if the error is higher than 1
2 . The error is normalized

when the ht is not discarded. Next, the weights are updated. If the sample was classified
correctly, then multiply its weight by the normalized error of Ht, else keep the weight the same.
Finally, the final hypothesis is computed by

H f inal = arg maxy∈Y

T

∑
t=1

∑
Ht(x)=y

log
1
Bt

,

where Bt is the composite normalized error. This composite normalized error is calculated as

Bt =
Et

1− Et
,

where Et is the sum of the weights of the incorrectly predicted samples.

Another boosting method in incremental learning in convolutional neural networks is the Incre-
mental Boosting CNN (IB-CNN) method proposed by S. Han et al. [57]. Boosting is in this method
integrated into a boosting layer and an incremental boosting layer. These layers are located after
the last fully connected layer of the CNN. The model is trained in an iterative manner.

In the model are the outputs from the last fully connected layer used as features. In the boosting
layer are each iteration features selected by using the AdaBoost algorithm. The selected nodes
are activated, whereas the other nodes remain inactivated. The combined hypothesis of the
boosting layer at time step t for feature vector xi with dimension K is defined as

Ht(xt
i) =

K

∑
j=1

αjh(xij),

where αj is the weight for node j and h(xij) the hypothesis. In the incremental boosting layer are
the selected nodes from the current iteration combined with the activation’s of selected nodes
from previous iterations. This is defined as

Ht
I(x

t
i) =

(t− 1)Ht−1
I (xt−1

i ) + Ht(xt
i)

t
,

where Ht−1
I (xt−1

i ) is the incremental boosted classifier from time step (t − 1) and Ht(xt
i) the

strong classifier from time step t. During testing time is just the incremental boosting layer
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used for the fully connected layer and the boosting layer remains unused. The main idea in
this approach is the same as in AdaBoost, with the difference that the weights are used to select
nodes from the fully connected layer instead of samples for the weak-learning algorithm.

Figure 3.1: Figure from the paper by S. Han et al. [57] showing the boosting CNN and incremental boosting CNN.
The blue nodes are activated nodes at the current iteration and red active nodes from previous iterations. The grey
ones are inactive.

3.2.2 Fine-tuning inspired methods
A different approach to incremental learning with convolutional neural networks is fine-tuning.
This method is applied in a paper by C. Käding et al. [4]. The paper focuses on scenarios where
new data is added to already known classes and where new classes are added to the current
ones. Their method uses warm-start optimization, which means that a pre-trained model is
used and the parameters from a previous time step are used for the current time step t. The
method has two main steps: 1. the initial learning and training step, and 2. the update step when
new samples arrive. The network does not require any modification in the situation where new
data of existing classes arrives. However, when new classes are added, the output layer needs
additional nodes for the new classes as well as connections to the lower fully connected layer.
The parameters for these connections are initialized randomly using a normalization technique.

The iCaRL algorithm, proposed by S. Rebuffi, A. Kolesnikov and C. Lampert [58], is a method
that resembles fine-tuning. It has three main components,

1. a nearest-mean-of-exemplars classifier, this method requires only storing few examples per
class,

2. prioritized sample selection based on herding, and

3. representation learning step to avoid catastrophic forgetting.

The nearest-mean-of-exemplars classifier is a classifier that assigns the label of a class, whose
mean is closest to the input image to the input image. However, the used approach in iCaRL
is not fully a nearest-mean-of-exemplars classifier. It only stores a sample of examples per seen
class. This is, because of limited memory available in practice. The method in [58] uses a flexible
number samples per seen class. Assume that M is the memory size and Kt the number of seen
classes at step t, then M/Kt samples per class are kept in memory. The examples kept in memory
are chosen such that they represent an approximation of the class’ mean. The training of iCaRL
works on a high level as follows. First, the model parameters are updated with the new dataset
and the exemplars sets (sets of examples per class). Next, the current exemplar sets are reduced
in size such that sufficient memory is available for examples of the new classes. This is done
with a ‘herding’ method. The examples at the end of the fixed order are removed. The next step
is to construct new exemplar sets. For a new set the M/Kt examples that are closest to the class’
mean are selected in a fixed order. This means, that the first to be selected, represents the mean
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of the class the best, and the last selected, the least best of the M/Kt selected of the set examples.
This to ensure the best possible representation after removing examples at a later stage.

The method of updating of the model parameters resembles some extent fine-tuning. The model
from the previous step is used as a warm-start and is updated. However, there are two modifi-
cations. The input data set is augmented to contain the new examples and the stored examples
from previously seen data. The loss function is augmented as well to encourage improvements
to the feature representation as well as allowing classifying new classes.

After training the model can be used to classify an image. Classifying an image requires the
exemplar sets, P = (P1, . . . , PK), and a feature map. In this paper is a convolutional neural
network seen as a trainable feature extractor. The first step is to determine the mean of the
examples per class, for each class y = 1, . . . , K do

µy =
1
|Py| ∑

p∈Py

ϕ(p),

where ϕ(p) is the trainable feature extractor. Then the class label of x can be predicted by
choosing the class whose mean is closest to x,

y∗ = arg miny=1,...,K||ϕ(x)− µy||.

Another, by fine-tuning inspired method, is Learning without Forgetting (LwF) proposed by Z.
Li and D. Hoiem [59]. In this method, are the parameters of the convolutional neural network
split up into shared parameters θs, task-specific parameters for all old tasks θo and task-specific
parameters for the new tasks θn. The shared parameters are defined as all parameters of the
convolutional, subsampling and fully connected layers. The task-specific parameters, θo and
θn, are the parameters of the classification layer. Here are at time step t, the θo parameters the
parameters from all tasks at time step t− 1 and the θn the parameters from the tasks that are
new at time step t.

Learning without Forgetting starts the initialization by classifying all images, xn,i ∈ Xn, from
the new task with the original network. This by using θs, θo and the randomly initialized θn
for each new class of images in the new task. The results of each image, yo,i, is a vector of the
probabilities per class. For all images, this is defined as Yo. After the initialization, the training
starts witg all tasks and regularization R. The training is done in two steps: first, θs and θo
are frozen and only θn is trained until convergence, then all weights θs, θo and θn are trained
together until convergence. For the training of the new tasks is multinomial logistic loss used
to encourage the predictions ŷn for an image to be consistent with the ground truth yn of that
image,

Lnew(yn, ŷn) = −yn · log ŷn.

For the old tasks is Knowledge Distillation loss used. It increases the weights for smaller proba-
bilities. It is defined as

Lold = −H(y′o, ŷ′o) = −
l

∑
i=1

y′(i)o log y′(i)o ,

where l is the number of classes. y′(i)o and ŷ′(i)o are defined respectively as

y′(i)o =
(y(i)o )1/T

∑j(y
(j)
o )1/T
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and

ŷ′(i)o =
(ŷ(i)o )1/T

∑j(ŷ
(j)
o )1/T

,

where T in [59] is set to 2. The new parameters are determined by

θ∗s , θ∗o , θ∗n ← arg minθ̂s ,θ̂o ,θ̂n

(
λoLold(Yo, Ŷo) + Lnew(Yn, Ŷn) +R(θ̂s, θ̂o, θ̂n)

)
,

where λo is a loss balance weight to increase the weight to favor old tasks more. It is mostly set
to 1.

Less-Forgetting Learning by H. Jung et al. [60] is to some extend similar to Learning without
Forgetting. When it generates a new model Mt, at time step t, it copies the model from time step
t − 1, in the paper referred as respectively the domain (Mt−1) and target network (Mt). After
copying the parameter values of the previous step as initial weights, it freezes the weights of the
classification layer to maintain the boundaries of the classifier. Then it is trained to minimize the
loss function

Lt(x, θt−1, θt) = λcLc(x, θt) + λeLe(x, θt−1, θt),

where Lt is the total loss function, Lc is cross-entropy loss function and Le is Euclidean loss
function. θt−1 and θt are the parameters for the model at t− 1 and t. Furthermore are λc and
λe tuning parameters and is x a sample from the dataset at time step t. The cross-entropy loss
function, Lc, is defined as

Lc(x, θt) =
K

∑
i=1

li log oi(x, θt),

where K is the number of classes, li the value of label i and oi the i-the output of the model at
time step t. This loss function helps the network to classify input x correctly. The other loss
function, Euclidean loss, Le, is defined as

Le(x, θt−1, θt) =
1
2
||fL−1(x, θt−1)− fL−1(x, θt)||22,

where L is the total number of hidden layers and fL−1 a feature vector of the layer L− 1. This loss
function makes the network learn to extract features which are similar to the features extracted
by source network.

The method proposed in a paper by T. Xiao et al. [61] uses fine-tuning in one of its compo-
nents. Its’ model grows organically and hierarchically when data from previous and new classes
become available. Seen from a high level, are the classes in the model split in a tree-like way
and grouped in groups of similar classes. The different components of the tree use cloning to
initialize parameters and use them as a warm-start for training. Thus, to some extent, it is using
fine-tuning.

The main procedure in the method, in the paper called ExtendLeafModel, has all classes of this
leaf, where at the start all classes are in a single leaf, in one superclass S and they are predicted
by one leaf model L0. When new classes arrive, then the method creates two new models, a
flat incremental model, and a set of leaf models. In the flat incremental model L′0 are the new
classes added to the top classification layer. In the set of leaf models {L1, . . . , LK}. Here is the
N0 classes portioned into K superclasses. Each model Li predicts in its subset of classes. A
branch model B is used to direct the prediction to the correct leaf model for a given input. The
new leaf models {L1, . . . , LK}, as well as the branch model B, clone the parameters from the
model L0. These are then trained using them as a warm-start. The classes are split and grouped
in superclasses, in this method, based on similarity by using error-driven preview and spectral
clustering partition. It generates a confusion matrix, C, where each Cij is the probability that
class i is predicted as class j. All K new superclasses have the same topology as the L0 model
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except for the classification layer.

To choose what model to use, the flat incremental model or the leaf models, the method trains
all models and then let them compete in accuracy. To make this approach incremental it is
generalized and creates a deeper hierarchy. First, the new classes are distributed among the
existing superclasses by the error-driven preview, then the algorithm is described above is done
for each of these superclasses.

3.3 Experiments in Literature
In the literature of CNN’s used in on-line and incremental learning, as described in 3.2, are
several types of experiments done. These experiments can be grouped in a few types of ex-
periments. In the first type is the approach in the initial phase trained on a dataset A. That is
followed by training the model on a dataset B in the incremental phase. In these experiments is
measured what the accuracy is on the test sets of both datasets. The second type is a variant of
the first. In this experiment is the training set of dataset B added gradually. After each step in
adding the dataset is the model tested on the test set of the dataset A and test set that contains all
data of dataset B learned thus far. The third type is a dataset that is split in x parts. These x parts
trained gradually the approach. After each or a combination of steps is the model evaluated.

In the Learn++ inspired method by D. Medera and S. Babinec [40] is the third method used.
They use the MNIST [62] dataset and create four independent training sets. Each contains 2500

images. The test set of each of these consists of the next 5000 images. As CNN is a small CNN
designed which is explained in their paper. The other boosting based method, IB-CNN by S.
Han et al. [57], benchmark their approach on four facial AU-coded (action unit) datasets. In their
experiments is the IB-CNN compared to a regular CNN, B-CNN (boosting CNN) and a variant
of IB-CNN, IB-CNN-S. In the experiments is the CNN based on a modification of cifar10 quick
from Caffe [63]. In the paper is not clearly explained whether and how their experiments are
on-line or incremental.

The fine-tuning approach by C. Käding et al. uses the AlexNet in their experiments. In their
experiments are the weights of the CNN pre-trained using the ILSVRC-2010 [64] dataset. For
their experiments are the MS-COCO-full-v0.9 [65] and Stanford40Actions [66] datasets used.
The model is initially trained on ten classes with 100 images for each class. In the incremental
phase are five classes added one-by-one. In Less Forgetting Learning by H. Jung et al. [60] is
the first method used. Here is first trained on one dataset and then in the incremental phase
trained on another one. After training on the second one, is the model evaluated on the test
set of both datasets. In the experiments are the MNIST and CIFAR-10 in color used as dataset
A and SVHN and CIFAR-10 in gray color as datasets B. In Learning Without Forgetting [59] by
Z. Li and D. Hoiem is mainly the AlexNet used. In this paper are the first and second type of
experiments used. The CNN is initially trained on ILSVRC-2015 [64] or Places365-standard [67]
datasets. In the incremental phase is the model trained on either PASCAL VOC 2012 image
classification [68], Caltech-UCSD Birds-200-2011 fine-grained classification [69] or MIT indoor
scene classification [70]. These new datasets are either at once trained or gradually added to the
model. In iCaRL by S. Rebuffi, A. Kolesnikov and C. Lampert [58] are in the experiments the
CIFAR-100 [71] and ILSVRC-2012 [64] datasets used and the 18-layer and 32-layer ResNet [72]
used as CNN’s. The images are added in batches of 2, 5, 10, 20 or 50 classes at a time for CIFAR-
100 and in batches of 10 or 100 for the ILSVRC small subset respectively the full dataset. The
experiments are of the third type. After each batch of classes is added is the model evaluated. In
approach by T. Xiao et al. [61] create two datasets containing the animal classes with more than
100 images from respectively the ImageNet 1K and ImageNet 22K. The model is evaluated after
training every 30,000 images.
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Proposed Approach
We have seen in the literature that incremental learning approaches using convolutional neural
networks use two main approaches. These are methods based on fine-tuning or boosting. In
this project, we propose three main approaches. The first one is fine-tuning. The next one
is combining convolutional neural networks. This one is neither fine-tuning nor a boosting
approach, although it shows ideas from boosting. Finally, we propose boosting approach.

4.1 Fine-tuning
The most naı̈ve approach of on-line learning with a convolutional neural network is to have
a single network and to fine-tune it each time new data arrives. This is a very simple idea
and easy to implement. However, soon the problem arises of what size and architecture the
initial CNN should have and how new classes of images should be handled. Another problem
with this approach is that weights and biases of nodes, depending on the design, can change
constantly. The risk of catastrophic forgetting arises. The earlier mentioned paper ‘Fine-Tuning
in an Incremental Environment” by C. Käding et al. [4] explored this approach. In this work,
we will use this as one of the approaches we compare. We will use two setups in fine-tuning a
convolutional neural network.

The final connected layer in a CNN has in an off-line environment the same number of nodes
as classes. We do not know this number of classes initially in an on-line environment. In our
first setup, we use a large initial number of nodes for this fully connected layer. The weights
and biases of these nodes are randomly initialized. All nodes are at the start not assigned to
a class. In each step, when new classes arrive, more and more nodes get assigned to a class.
Each time before the CNN get fine-tuned, all unassigned nodes are re-initialized. This is done
because the weights and biases can change during fine-tuning even when these are not assigned
to a class. The implementation of this approach is simple since the number of nodes is fixed.
The downside, however, is that at some point all nodes are in use and the network cannot learn
any new classes. Also, we have the problem that we have to decide at the start what size this
layer should be. A too big final layer could also hurt how well the network learns and what
accuracy it achieves.

The other main approach is the opposite of the first one. Instead of using a fixed number of
nodes, it uses a flexible number. The fully connected layer has always the same number of nodes
as the number of classes seen. In each step when new classes arrive new nodes are added.
These nodes are initialized randomly. The benefit of this approach over the other is that the
network can grow as much as needed. The problem we will encounter at some point is how
many classes the network can handle. It cannot grow indefinitely. A network might work well
with a thousand classes. One could grow the final layer to accommodate a million classes, but
the network might not able to handle this.

Both approaches are shown in Figure 4.1. Here is the top one the final fully connected layer of
the large CNN. The gray is the used nodes and the white the unused ones. The bottom one is
the final connected layer of the approach that adds nodes when needed. The dark gray shows
the added nodes.

Usually, in fine-tuning, all parameters get trained. This strategy might not work in an incre-
mental environment. It could cause catastrophic forgetting. We will use an idea from the paper

22
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Figure 4.1: Figure showing two fine-tuning approaches. The top one is the initial large CNN and in the
bottom one are nodes added when needed. The gray represent the used nodes, the dark gray the added
nodes and the white the unused nodes.

“Learning Without Forgetting” by Zhizhong Li and Derek Hoiem [59] in our setups. They split
the parameters of a CNN into three groups. First is the set of shared parameters θs. Those
are the parameters of the convolutional layers and fully connected layers that are not the final
fully connected layer. The second set is the set of task-specific parameters of previously learned
classes θo. These parameters are from the nodes of the final connected layer that are assigned to
classes learned in previous steps. The last set is the set of task-specific-parameters of new classes
θn. These parameters are also in the final fully connected layer but are assigned to the classes
that arrived at the current step. The nodes in out large CNN approach that are not assigned to
a class are ignored in this model.

We can develop several fine-tuning procedures based on this idea. We can freeze certain sets of
parameters to influence the learning in the incremental phase. In this work, we will use four
different procedures. The first procedure is to not freeze any parameters during the fine-tuning.
All parameters get fine-tuned. We will call this approach the Classic approach. In the second
approach, that we call FreezeO, we freeze the old task-specific parameters θo. The shared, θs,
and new task-specific parameters, θn, will be fine-tuned during training. In the third procedure,
FreezeOS, the old task-specific parameters θo as well as the shared ones θs are frozen. During
training, only the new task-specific parameters are fine-tuned. The last procedure, FreezeOS+F,
combines the third with the first. It starts by fine-tuning the only new task-specific parameters
θn. Next, it unfreezes all parameters and fine-tunes again like the classic approach and fine-tunes
all parameters.

4.2 Combined Convolutional Neural Network
Instead of adding new classes into the same convolutional neural network as in fine-tuning,
we can also train a new CNN when new classes arrive. In this approach, the main idea is to
generate a new CNN each time new data arrives. We end up with multiple convolutional neural
networks over time. When we want to classify an image after training multiple CNN’s, we
predict the image in each individual CNN and then combine their predictions. We have two
approaches to combine the individual predictions.

In the first one, we do the predictions in parallel. At training time, we train a new CNN each step
t when new data arrives. For each image during test time, we let all CNN’s make a prediction for
it. Each CNN returns its’ prediction, the class with the highest probability, and the probability
of this prediction. We store the returned predictions and their probabilities in a data structure
such that we can remember which prediction had which probability. For the final prediction, we
select the prediction with the highest probability.

This strategy is shown in Algorithm 2. It iterates over the M CNN’s and get for each m the
prediction y′m,x and its probability pm,x. For the final prediction, it uses argmax to get the location
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of the class with the highest probability overall.

Algorithm 2 Parallel Prediction

1: Input: An image x, trained CNN’s C of combined model, where m ∈ 1, . . . , M
2: for m = 1, . . . , M do
3: Get prediction and its’ probability from CNN cm ∈ C
4: [y′m,x, pm,x] = cm(x)
5: end for
6: Make final prediction by choosing class with highest probability.
7: j = argmaxpx
8: y′f inal = y′j,x

In the second approach, we add an extra class to each CNN. This class just contains noise. It
contains images that do not relate to any of the other classes in the CNN. We call this the none-of-
the-above (NOA) class. At training time, each CNN is trained the same as in the other approach
with the difference that there is an extra class. We start predicting by getting a prediction from
the first CNN. If the prediction is one of the classes that is not the NOA class, then we choose that
as the prediction as final prediction. However, if the prediction is the NOA class, we continue to
the next CNN. With this next CNN we do the same: if the prediction is not the NOA class, then
the final prediction is that class and if it is the NOA class, then we continue to the next CNN.
This is done until a final prediction has been made. If in the last CNN the NOA class the highest
probability has, we choose the class with the second highest probability.

This strategy is shown in Algorithm 3. Here, the label of the NOA class is the same as the
number of classes in the CNN m, Km. We iterate over the M CNN’s and when the class with the
highest probability is not the NOA class, we make the final decision.

Algorithm 3 Prediction using NOA class

1: Input: An image x, trained CNN’s C of combined model and number of classes in each CNN
Km, where m ∈ 1, . . . , M

2: Initialize: m = 1 and y′f inal = −1
3: while y′f inal = −1 and m ≤ M do
4: Get predictions and their probabilities from CNN cm ∈ C
5: [pm,x, y′m,x] = cm(x)
6: j = argmax(pm,x)
7: o = y′j,x
8: if o 6= Km or m = M then
9: Make final prediction

10: y′f inal = ox

11: end if
12: m = m + 1
13: end while

The idea of these approaches is very simple. When learning with new classes, no old data is
needed to preserve old information. Also, each CNN can be highly optimized to learn new data,
each individual CNN can be very stable. In an incremental environment, we can just choose
random images for the NOA class. However, how accurate will the combination of results be
when the probabilities of many CNN’s are combined in parallel? And what will happen if you
keep adding CNN’s and the prediction has to go through many NOA classes to get to the CNN
that contains its class? These are things we will research in the experiments.
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4.3 Boosting with Convolutional Neural Networks
Our third main approach is AdaBoost in combination with a convolutional neural network. This
approach is inspired by the approach in a paper by D. Medera and S. Babinec [40]. This section
goes into more detail how AdaBoost for multiple classes works and how we combine AdaBoost
and with CNN’s.

4.3.1 Multi-class AdaBoost
In Section 2.5, we described the basic idea of a boosting algorithm and how the particular boost-
ing algorithm AdaBoost works. In short, a boosting algorithm is an algorithm that combines a
number of weak classifiers, the weak-learners, into a stronger classifier, the strong-learner. Ad-
aBoost is one of the first algorithms of this kind. However, it is designed for a binary problem.
We do image classification with an unknown number of classes in an on-line environment.

Other AdaBoost based approaches reduce the multi-class problem into a multi-binary class
problem. Examples for this are in the AdaBoost paper by Y. Freud and R. Schaphire [20] and
Schaphire [56]. In [20] is the algorithm the same, but it is handled differently. Instead of asking
just a single predicted label from the weak-learner, they ask a set of plausible labels for each
sample. The hypothesis of the weak-learner is evaluated based on whether the correct label was
included in the set and the number of incorrect labels that were included. Thus, a hypothesis
that includes the correct label gets a better evaluation than one that does not. Also, a hypothesis
with one incorrect label gets a better evaluation than one that includes ten. In [56] the problem
is reduced in a different way. Here is each label in the dataset mapped to a set of binary labels.
This set is a unique sequence for each label. Each example is predicted by all weak-learners
and the label for the final classification is chosen by the label that is closest to the sequence of
predictions. The Hamming distance is used here.

In our algorithm, we use the multi-class AdaBoost algorithm proposed by Zhu et al. [73,74]. The
multi-class AdaBoost algorithm presented in [73,74] is almost identical to the original AdaBoost.
Although with a small difference. In their paper is also shown that the multi-class algorithm
satisfies the same statistical justification as the original AdaBoost.

The multi-class AdaBoost presented in the paper is called Algorithm called SAMME Stage-wise
Additive Modeling using a Multi-class Exponential loss function. An overview of the SAMME
algorithm is shown in Algorithm 4. Here is cm classifier m in the AdaBoost classifier and x a
set of training images with labels y. The difference compared to the AdaBoost algorithm in [20]
is the extra term log (K− 1) on line 5. When the number of classes K = 2 is chosen, then the
algorithm reduces to regular AdaBoost. However, when the number of classes is K > 2, then the
accuracy of the weak classifier only needs to be better than random guessing. The term (1− εm)
only needs to be larger than 1/K to make αm positive. In a multi-class environment is random
guessing equal to 1/K, where K is the number of classes.

Algorithm 4 SAMME

1: Initialize weights wi = 1/n, i = 1, 2, . . . , n.
2: for m = 1, . . . , M do
3: Fit a classifier cm(x) to the training data using weights wi
4: Compute εm = ∑n

i=1 wiI (yi 6= cm(xi)) / ∑n
i=1 wi

5: Compute αm = log 1−εm
εm

+ log (K− 1)
6: Set wi ← wi · exp (αm · I (yi 6= cm(xi))) for i = 1, . . . , n
7: Re-normalize wi
8: end for
9: Output C(x) = arg maxk ∑M

m=1 αm · I (cm(x) = k)
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In each step, it iterates M times to generate M trained weak-learners. It starts by training a
weak-learners with weights wi in an iteration. Then it computes the error rate εm of the weak-
learner on the training data and the current weights. A weighted error rate is the result. Next,
it computes the weight of the weak-learner αm. The new weights are computed with this weight
αm. Finally, the weights are re-normalized.

After all classifiers cm are fit, the boosting classifier can make predictions. For this final pre-
diction, the image or set of images is inserted into each of the CNN’s. Each CNN returns its
prediction. In the boosting algorithm is the weight of the CNN added to that class. At the end,
the class with the highest value is chosen, e.g. the one that got the highest value of the sum of
all the weights it got assigned.

4.3.2 Convolutional Neural Networks as Weak-learners
In our approach, we will use convolutional neural networks as weak-learners and the SAMME
multi-class algorithm as boosting algorithm. In step 3 of Algorithm 4 is a CNN trained to fit
the dataset using weights wi. During the training are images of batches chosen based on these
weights. After it has been trained, the algorithm continues to step 4 where predictions for all
images in the training set are made. The CNN generates a vector of the probability for each
image. The class with the highest probability is chosen as final prediction.

4.3.3 Image Selection During Training
In AdaBoost are the weights for all samples in the training data given to the weak-learner during
training. The idea is that an image with a higher weight is more likely to be chosen than an image
with a smaller weight. During training, this results in that the model sees these higher weighted
images more often than others and achieves a higher accuracy on them. That means that the
weights are used in the selection of images in the training batches in our approach. An image
with a higher weight should appear in more batches and than an image with a smaller weight.

The approach we use to choose images for training batches is shown in Algorithm 5. We iterate
over the train set until we have selected M images, where M is the batch size. To select an
image, we have a random number p between 0 and 1 and a cumulative probability cumProb.
This cumulative probability is initially set to 0. The weight of each image we iterate over is
added to the cumulative probability. The image that causes the cumulative probability to grow
larger than p is selected. After an image is selected, we reset cumProb reset to 0 and we choose
new random number p. The selection procedure is started again. This is continued until we
reach M images.

In this selection procedure, images with a larger weight add more to the cumulative probability
cumProb than images with a smaller weight. This results that the larger the weight an image
has, the higher its chance is that it caused the cumProb to be larger than p. This is in line with
the idea of these weights in AdaBoost.

4.3.4 Weights per Image and per Class
By default, AdaBoost works with weights per images. The images are selected based on their
weight during training of a model. We showed our approach how we select images based on
these weights in the last section. We are also interested to see whether the result improves when
during updating we do not generate a weight per image, but average the weights of all images
of a class. The training set could contain outliers. Weights based per image could cause the
algorithm to more train on them and so chance the weights negatively for its class. Also in an
incremental environment can concept drift occur. The weights per image could cause the model
to react too fast on this drift and cause it to be less stable.
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Algorithm 5 Image selection CNN as weak-learner

1: Given M as batch size, m = 0 the current number of selected images, n as the number of
images to select from and weight vector w

2: Initialize the cumProb to 0 and select a random number p, where p ∈ [0, 1]
3: Initialize counter i = 0
4: while m < M do
5: cumProb = cumProb + wi
6: if cumProb > p then
7: Add image i to current batch
8: Set m to m + 1
9: Reset cumProb to 0 and select a new random number p

10: end if
11: i = i + 1
12: if i ≥ n then
13: i = 0
14: end if
15: end while

We want to see whether the approach performs better and more stable by using weights per class.
Instead of that the weight per image changes on whether it was predicted correct or incorrect,
the weight of the class is increased or decreased based on the accuracy of the prediction. The
weight increases when more images get predicted incorrectly while it gets decreased when a
class as a whole performs better.

Algorithm 6 SAMME with shared weights per class

1: Initialize weights wi = 1/n, i = 1, 2, . . . , n.
2: for m = 1, . . . , M do
3: Fit a classifier cm(x) to the training data using weights wi
4: Compute εm = ∑n

i=1 wiI (yi 6= cm(xi)) / ∑n
i=1 wi

5: Compute αm = log 1−εm
εm

+ log (K− 1)
6: Set wi ← wi · exp (αm · I (yi 6= cm(xi))) for i = 1, . . . , n
7: Re-normalize wi
8: for z ∈ Z do
9: Wz = ∑n

i yi [yi = z] / ∑n
i 1 [yi = z]

10: end for
11: Set wi ←Wci for i = 1, . . . , n
12: Re-normalize wi
13: end for
14: Output C(x) = arg maxk ∑M

m=1 αm · I (cm(x) = k)

We show in Algorithm 6 our modified SAMME algorithm that uses weights per class instead of
weights per image. The new weights per class are computed in lines 8 to 11 after doing all the
usual steps. The weights per class are computed by iterating over all weights and calculating the
sum of the weights of all images in a class. This cumulative weight is divided by the number
of images in the class to compute the average weight. This average weight is assigned to each
image in the class.

4.3.5 Incremental Learning in AdaBoost with CNN’s
Up to this point, we have mostly described a non-incremental AdaBoost approach. In a non-
incremental environment, we generate M CNN’s as weak-learners. The M depends on the data
and the network the approach is used on. In an incremental environment, we initially also train
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M CNN’s with the first set of training data. The training of these M CNN’s follows the SAMME
algorithm. Each time a new set of data arrives, M new CNN’s are trained and added to the
existing ones. This results in having t ·M CNN’s at each step t. Each newly trained CNN has
enough nodes in the final fully connected layer to accommodate all classes from the new and
old data. However, these new CNN’s are not trained on previous classes.

The problem we face at this moment is what to do with the existing CNN’s. These CNN’s are
trained on previous data and have a too small final fully connected layer. We iterate over these
existing CNN’s in the incremental phase and we add nodes to their final fully connected layer to
accommodate all classes. Each of these CNN’s is fine-tuned using one of the learning procedures
described in Section 4.1. Next, we have the choice whether we want to update the weight of the
CNN. We can either update the weight using SAMME as we did when we trained the CNN for
the first time or we do not update its’ weight. Updating the weights could cause the classifier to
be more plastic, while not updating might make the AdaBoost classifier more stable.

4.4 Choice of Convolutional Neural Network
In the heart of each approach is a convolutional neural network used. The approaches work in
such a way that they do not depend on a certain CNN. The CNN can be swapped out depending
on the requirements of the environment. There are two requirements for the CNN. The first is
that the CNN can support the input of the approach, which is in our case images and for the
boosting approaches a weighted set of images. The other requirement is that the output if the
CNN is something the approach can handle. In most cases that would be the top-1 prediction.

The choice of CNN would mainly depend on the problem that the model is used on. There
are certain limitations though. A larger CNN might cause a better accuracy than a smaller one,
but such a CNN could need more memory and have a longer computation time. When it is
applied in an incremental environment, the CNN might be too large to be stored in memory or
the weights and biases are too big to be stored. This should be considered when the CNN is
used in combination with the combined CNN’s and AdaBoost approaches. In these approaches,
multiple CNN’s are generated and the number of them grows when more data becomes avail-
able. The more CNN’s are generated, the more storage of these CNN’s is needed. In an on-line
environment, this is less of a concern.
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Experiments
We do three main experiments with the approaches described in the previous chapter. These
experiments are comparing our approaches, comparing several fine-tuning setups and compar-
ing updating the weight of an existing CNN in the AdaBoost classifier versus not updating the
weight. Each experiment consists of several setups.

5.1 Implementation
Our implementation of the approaches described in Chapter 4 consists of three parts. The first
part is the CNN and the code that does the learning and predicting on the CNN. The second part
is an interface for this learning and prediction. It also handles some of the learning procedures.
The final part is the code for the approaches themselves. The implementation is split like this to
make it more modular and flexible. So, we can reuse the code from the first and second part in
the implementation of each of the approaches.

The first part uses the Caffe framework [63]. Caffe is a deep learning framework originally
developed by UC Berkeley. The framework is written in C++. A model of a network does not
need to be programmed but is defined in a separate text file. The learning parameters can also
be defined in a text file. In our experiments, we use the default Caffe. As input in our CNN, we
use in most setups the ImageData layer. For the AdaBoost setups, we modified the ImageData
layer. It uses the ImageData layer code but adds the image selection algorithm as described in
Section 4.3.3. We call it: WeightedImageData layer.

In the second part, we communicate with Caffe. It functions as an interface between our ap-
proaches and Caffe. It manages setting up the CNN in Caffe, giving Caffe the training set and
saving the trained network. At test time it handles the prediction and can determine the top-1
prediction. For this part, we use the pyCaffe interface to communicate with Caffe.

The last part is the approaches themselves. We implemented the approaches in Python. It han-
dles all the logic of the approaches as described in the last chapter and it uses the interface for the
learning and predicting with its CNN’s. In the AdaBoost approach, we used the implementation
of SAMME in SciKit learn [75] as a basis for our implementation.

5.2 Dataset
In our experiments, we use the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
[64] dataset. The ILSVRC-2012 dataset is rather large. It is a subset of the ImageNet database,
which contains 15 million images. The data set is often used in image classification. The images
are of various sizes and are divided into 1,000 classes. The training set contains about 1, 000
images of each class, which results in about 1.28 million images. The validation set and test set
have respectively 50,000 and 150, 000 images with the same 1,000 categories. We do not use the
validation or test set in this work.

We will use a subset of the ImageNet dataset for our experiments. To simulate an incremental
environment, we feed our approaches data gradually with images. We generate seven sets and
four sets containing each ten classes of images to do this. For each class are 800 images randomly
selected from the ILSVRC-2012 training set. These 800 images are divided into four groups of
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200 images. 4-fold cross-validation is applied on these four sets for more accurate results. In
each setup are three sets, 600 images, used for training and one set, 200 images, for testing. To
decrease the chance that the order of classes influences the accuracy, we will learn the sets of
classes in two orders. If we number the sets from one to seven and one to four respectively, then
we apply 2-fold cross-validations and learn the sets in ascending and descending order. For each
setup, we average the result over the 4-fold and 2-fold cross-validation.

For each experiment, we use either the seven or four sets of ten classes as described above.
In each set, no old information is available. We can see how well the approaches retain old
information of previously learned classes in the experiments with this dataset. To also simulate
on-line learning with limited ability to store old information, we have a second dataset of the
same size. The dataset is exactly the same as the one described above. However, in each set
are about 1, 000 images of the previously learned classes. When Kt−1 is the number of classes
learned in all previous steps, then the number of images available per class is 1000/Kt−1. For
example, in set 2 are 10 previous classes. The number of images, we choose to store in memory
from set 1 is 1, 000/10 = 100. In set 4, there are 30 previous classes from set 1 to 4. Thus the
number of images per previously seen class is 1000/30 = 33.33.... We round that up to 34 images
per class of sets 1 to 3. We always round up to have an equal number of images for each class.
This causes the total number of previous images to be slightly above 1, 000 sometimes. The
images for this old information are selected randomly from the images in the previous training
sets.

There are many ways to test the accuracy in an incremental environment. You can test how well
the accuracy is for the newly learned classes, but it is also interesting how well the approach
performs on previously learned data and how well it retained this data. At each step t, we
will test the trained model of the currently added classes as well as on previously learned
information. We test the model of each individual test set Sv,u, where u ∈ 1, ..., T and on a test
set that combines all test sets Sv,1 to Tv,t. We test each test set on each model generated by the
4-fold and 2-fold cross-validation and then average over their result.

5.3 Convolutional Neural Network
The network we use in our experiments is the AlexNet network proposed by Krizhevsky et
al. [19]. We use the AlexNet since it a simple CNN that is easy and relatively fast to train. Other
CNN’s are larger and take a longer time to train. The AlexNet has 12 layers. These layers consist
of one data layer, five convolutional, three pooling and three fully connected layers. The original
network uses 224× 224 pixels crops from 256× 256 pixels images. In our experiments, we re-
sized the images to 128× 128 pixels and we use 99× 99 pixel crops. Table 5.1 gives an overview
of the network and shows the sizes of all the layers.

In the network, all the convolutional layers use ReLU and LRN. We use the default network setup
as in [19]. The first convolutional layer uses a kernel size of 11 with a stride of 4. This results in
feature maps of 23× 23. In the second one is a kernel size of 5, stride of 1 and padding of 2 used.
These settings cause the feature maps to be the same size as its input. The other convolutional
layers all use a kernel size of 3 and padding and stride of 1. The convolutional layers 1, 2 and 5
are followed by pooling layers. All of these pooling layers are maximum pooling. These layers
use a kernel size of 3 and stride of 2. The fully connected layers 6 and 7 both have an output
size of 4096. The output of the final fully connected layer depends on which approach it is used.
In the fine-tuning where we add nodes, it has the size of the total learned classes. In the initial
large fine-tune setup, it has the number of nodes set at the start of the learning. In our combined
CNN’s approaches, the final fully connected layer has the number of nodes that the training set
the CNN is trained on has.
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Layer Contains Size output
Data Data augment. 3 99 99

Convolutional 1 ReLU, LRN 96 23 23

Pooling 1 96 11 11

Convolutional 2 ReLU, LRN 256 11 11

Pooling 2 256 5 5

Convolutional 3 ReLU 384 5 5

Convolutional 4 ReLU 384 5 5

Convolutional 5 ReLU 256 5 5

Pooling 5 256 2 2

Fully connected 6 ReLU, dropout 4,096

Fully connected 7 ReLU, dropout 4,096

Fully connected 8 (Depends on setup)

Table 5.1: Overview of the network used in the pooling and augmentation experiments. The first column
is the name and type of the layer, the second column is other things that layer contains (ReLU is Rectified-
Linear Unit and LRN is Local Response Normalization) and, the third column is the size of the output of
the layer (convolutional and pooling layers: number, height and width of feature maps).

5.4 Learning and Fine-tuning Setup
For all experiments, we use the same learning parameters. These parameters are shown in Table
5.2. These values were derived by trial and error where we started with the default values used
in [19]. We use a base learning rate of 0.1. When we do fine-tuning this base-learning rate start
by a tenth, thus 0.01, of the normal value.

Setting Value Description
Base learning rate 0.1 Learning rate at start

Learning policy fixed Constant learning
rate throughout training

Max. iterations 6,000
Stop learning after
6,000 iterations

Momentum 0.02

Weight decay 0.0004
Rate that the weight at
nodes decay

Table 5.2: Overview settings used in Caffe for training in the pooling and augmentation experiments

When we train a CNN, its’ weights are initialized by a Gaussian with a standard derivation of
0.1 and its’ biases are all 0. The Local Response Normalization uses a local size of 5, an α of
0.0001 and a β of 0.75. In the fully connected layers 6 and 7 is a drop-out rate of 0.5 used.

5.5 Data augmentation
In the Chatfield et al. [76] and Krizhevsky et al. [19] papers are methods described to reduce
over-fitting. These methods are designed to artificially enlarge the used dataset. The methods
described are taking random cropped patches and flipping. The first method works by taking
a random cropped patch from the original image. The original image has a size of 256× 256
pixels. A random patch of 224× 224 pixels is extracted during training time. In our experiments,
we work with smaller images and thus smaller patches. We take a random 99× 99 pixels patch
from 128× 128 pixels images. Taking a 99× 99 sized patch means there are 29 · 29 available
patches and thus increasing the dataset size by a factor of 841. During test time is always the
99× 99 center patch used. The second method is simple. It flips the image on its horizontal
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axis. So, the top becomes the bottom and vice-versa. This increases the dataset by a factor two.
Combining the two methods enlarges the dataset by a factor of 1,682.

5.6 Experimental Setups
In this work, we have three main experiments. The setups and what we research in these exper-
iments are explained in this subsections below.

5.6.1 Comparing Approaches
This is the main experiment of this work. We will compare in this experiment the three main
approaches we described in Section 4. The idea of this experiment is one, to see whether the
approaches we proposed work and, second, how stable or plastic they are. From the results, we
will see which of these approaches works best in an incremental and on-line environment.

We have two setups for each of the three main approaches. In Table 5.3 is an overview of all
approaches given. We use fine-tuning with an initial large fully connected layer (FineL) and
one that adds nodes (FineA) to that layer when new classes arrive. These setups use FreezeOS
on the new only dataset and FreezeS when also old data is available. We decided that based
on the results of the experiment of Section 5.6.2. The first combined CNN’s approach (CcnnP)
is combined CNN’s where all predictions are done in parallel and the class with the highest
probability is chosen. In the other combined CNN’s approach (CcnnN) are the predictions done
in series using the ’none-of-the-above’ (NOA) class. We use the weights per image (AdaIW)
and weights per class (AdaCW) in the AdaBoost setups. The AdaBoost setups use the FreezeOS
on the only new and FreezeO on the old and new data during fine-tuning. All setups use the
network, learning setup and data augmentation from the sections above.

Name Approach Details
FineL Fine-tuning Large initial fully connected layer and FreezeOS (new)/FreezeO (new+old)
FineA Fine-tuning Add nodes to fully connected layer and FreezeOS (new)/FreezeO (new+old)
CcnnP Combined CNN’s Combined CNN’s using parallel predictions
CcnnN Combined CNN’s Using NOA class for prediction
AdaIW AdaBoost CNN Using weights per image and FreezeOS (new)/FreezeO (new+old)
AdaCW AdaBoost CNN Using weights per class and FreezeOS (new)/FreezeO (new+old)

Table 5.3: Overview of approaches, short name we use and overview of their details

In this experiment, we will use the data set with 7 sets of 10 classes. This with all the cross-
validation as described in 5.2.For the combined CNN’s setup that used the NOA class, we add
none-of-the-above class to each of the ten sets. These NOA classes contain images of classes that
are not part of the classes from any of the sets.

Each setup is run on both versions of the dataset: the one that only contains new images and
the one that also contains old information. With the data set that only contains new images,
we test how well the approaches can retain old information without access to that information.
This simulates incremental learning. When we use the dataset with old images, we simulate an
incremental environment with some more memory or to some extend on-line learning.

5.6.2 Comparing Fine-tune Setups
In this experiment, we compare the different fine-tuning procedures. We want to see how well
and which performs the best in an incremental and on-line environment. Some procedures
might not work at all incrementally.
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An overview of the setups we use is shown in Table 5.4. The first setup is the Classic procedure
and it does not freeze any parameters during training. In the second one, FreezeO, are initially all
parameters trained, but during the fine-tuning are the old target parameters frozen. In FreezeOS
are the old target as well as the shared parameters frozen during training. In the last procedure,
FreezeOS+F, is the CNN first fine-tuned like FreezeOS and then again fine-tuned like the Classic
approach.

Name Details
Classic Not freezing any parameters
FreezeO Freezing old target parameters
FreezeOS Freezing old target and shared parameters
FreezeOS+F Freezing old target and shared parameters, then fine-tune without freezing

Table 5.4: Overview of fine-tune setups.

We use the smaller dataset in this experiment. This dataset has four sets of ten classes. Also in
this experiment are the learning settings as described above used. Similar to the first experiment
are also here all setups run on both versions of the dataset.

5.6.3 AdaBoost Updating Weights vs Not Updating Weights
In the last experiment, we compare two setups of the AdaBoost approach. We want to compare
here the effect of updating the weights of the individual CNN in the AdaBoost classifier during
fine-tuning. As described in Section 4.3.4, can the weights of a CNN be updated or not during
the incremental phase. When a new CNN is generated, the AdaBoost classifier computes a
weight for this CNN. In a next step are new CNN’s generated and these previous CNN’s are
fine-tuned. We can now either update their weights based on their error on the new data or keep
their initial weight. Updating their weight could cause the model to be more plastic, while not
updating maybe make it more stable.

To test this idea, we have two setups. In the first one, we do update the weights whereas in the
other we do not update the weights. In both setups, we use weights for the individual images
and do not share them with a class.

Name Details
Not updating Not updating weights of CNN. Using FreezeOS (new)/FreezeO (new+old)
Updating Updating weights of CNN. Using FreezeOS (new)/FreezeO (new+old)

Table 5.5: Overview of AdaBoost setups.

We will use the smaller four set dataset in this experiment. This dataset contains new images
will test how stable they are. The other one that does contain old information will test more their
plastic side. Also here we use FreezeOS when only new data is available and FreezeO when also
old information is available.

5.7 Measurements
In all experiments, we work the image classification problem. We want to classify the topic or
category of the image in this problem. This means the model receives an image as input and
returns a prediction of the topic of the image. This topic is one of the classes the model is trained
on.

A widely-used method is the top-1 and top-5 accuracies and error rates. Due to our implemen-
tation, we cannot predict a top-5 at this moment. We will only use the top-1 accuracy. The
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top-1 accuracy is the class that is selected by the model. The calculated accuracy is the number
of correctly predicted images dived by the total number of images. As described earlier is this
accuracy averaged over the two cross-validation procedures we use.
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Results
In this section, we give a detailed overview of the result of the experiments. The results are
divided into sections representing the three main experiments. In the main chapter are several
tables and figures shown. More detailed results are given in the appendices on this work. These
detailed results include the full tables of results for the comparing approaches experiment and
tables of the figures shown in this chapter. In the text and captions are the corresponding tables
and appendices referenced.

6.1 Comparing Approaches
We compared two setups of each of our main approaches in this experiment. These are the
fine-tuning with a large CNN (FineL), fine-tuning that adds nodes (FineA), combined CNN’s
with parallel prediction (CcnnP), combined CNN using the NOA class for prediction (CcnnN),
AdaBoosting with weights per image (AdaIW) and AdaBoost with weights per class (AdaCW).
The fine-tuning and boosting setups use FreezeOS when only new data is available and FreezeO
when they also have access to old information. The setups are explained in more detail in
Chapter 5.6.1.

The detailed results of these experiments are shown in Table A.1 and A.2 of Appendix A. An
overview of these results is shown in Figure 6.1 on only new data and in Figure 6.2 where also
old information was available. In the plots is each setup represented by its own line. The first
plot, (a), shows the accuracies over time of the first set. The next plot, (b), shows the accuracies
on previous sets except for the first set. The bottom two plots show results of respectively the
newest set and combined sets.

The main differences between the results on the new and old and new data are that the accuracies
on the old and new data are in most cases higher. The fine-tune and boosting setups go down
to an accuracy of 0 on the first set with only new data. Whereas all approaches have on the new
data an accuracy around 10% on the combined sets, the accuracies on previous sets except the
first and on the combined sets are all higher when old data is available. The only exception to
this difference is the combined CNN’s setups. In almost all cases their accuracies are similar
when only new and when also old data is available.

Within the results on only the new data, have the Ccnn setups on the first set, previous sets, and
combined sets the highest accuracies. Especially on set 1 have the Ccnn setups a much higher
accuracy. However, on the newest set is their accuracy the worst and even as low as 0. The other
setups do not well on the first set as well as on previous sets. On the newest set, they do perform
better. All setups follow same downwards trend in the combined results. Some a bit faster than
others. The Ccnn methods have highest combined accuracy at 70 classes and are on top at each
step. The FineA setups perform the worst here at 30 classes and higher.

Most setups perform better when old data is available. However, the Ccnn setups performed
very similar to when only new data is available. This caused that the other setups have higher
accuracies than them in many cases except on the first set. The fine-tune setups have on the
first set the lowest accuracy, but on the other scenario’s it performs best. The boosting setups
perform very similar to them. On the first set, they had a slightly higher accuracy, but on the
others slightly smaller than the fine-tune setups.
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Figure 6.1: Plots showing results of comparing the learning approaches (Comparing Approaches) as described in
Chapter 5.6.1 on the dataset with only new data. The data used for each of these plots is shown in Tables B.1, B.2,
B.3 and B.4.

6.2 Comparing Fine-tune Setups
In this experiment, we compare the four different learning procedures for the fine-tuning ap-
proaches: Classic, FreezeO, FreezeOS, and FreezeOS+F. In this experiment, we used the fine-tune
setup that has a large initial CNN. We did this on both datasets with four sets of ten classes. The
setup is described in more detail in Chapter 5.6.2. The results of this experiment are shown in
Table 6.1. The table is separated into four column groups. In each of these groups is one training
set added to the model, Train 1 through Train 4. Each of these groups shows the results on the
validation sets. These are the validation sets of the current training set, each previous training
set and the validation set that combines them all. The numbers in Table 6.1 are the accuracies
of the learning procedure on the validation set. This accuracy is the average over the 4-fold and
2-fold cross-validation as described in Section 5.2.

Plots from this table are shown in Figure 6.3 and Figure 6.4. These are respectively the results
on the only new and new and old data. Each line represents one of the learning procedures.
The y-axis is the accuracy and the x-axis the number of classes learned. Each training set adds
ten new classes to the model. The first plot shows the accuracy of the model on the first set of
classes. The second, the accuracy of the set of classes most recently added. And finally, the third
shows the combined accuracy of all learned classes. Tables showing the data used in this figures
can be found in Chapter C.



6.2. Comparing Fine-tune Setups 37

10 20 30 40 50 60 70
0

20

40

60

80

100

Number of classes

A
cc

ur
ac

y

Set 1

(a)

30 40 50 60 70
0

20

40

60

80

100

Number of classes
A

cc
ur

ac
y

(%
)

Previous sets except first

FineL
FineA
CnnnP
CcnnN
AdaIW
AdaCW

(b)

10 20 30 40 50 60 70
0

20

40

60

80

100

Number of classes

A
cc

ur
ac

y
(%

)

Newest set

(c)

10 20 30 40 50 60 70
0

20

40

60

80

100

Number of classes

A
cc

ur
ac

y
(%

)
Combined sets

(d)

Figure 6.2: Plots showing results of comparing the learning approaches (Comparing Approaches) as described in
Chapter 5.6.1 on the dataset containing new and old information. The data used for each of these plots is shown
in Tables B.5, B.6, B.7 and B.8.

Train 1 Train 2 Train 3 Train 4
Test 1 Test 1 Test 2 Test 1-2 Test 1 Test 2 Test 3 Test 1-3 Test 1 Test 2 Test 3 Test 4 Test 1-4

New

Classic 65.24% 0% 73.23% 36.62% 0% 0% 73.60% 24.53% 0% 0% 0% 67.45% 16.94%
FreezeO 66.55% 1.04% 73.37% 37.21% 0.01% 0.18% 73.13% 24.50% 0% 0% 0.07% 66.88% 16.86%
FreezeOS 63.76% 61.62% 10.69% 36.15% 46.49% 1.96% 32.40% 26.95% 26.59% 0% 2.43% 35.97% 16.25%
FreezeOS+F 66.23% 0% 73.22% 36.61% 0% 0% 74.09% 24.71% 0% 0% 0% 67.40% 16.85%

Old

Classic 65.53% 35.44% 70.04% 52.80% 22.20% 27.98% 69.24% 39.81% 17.86% 23.09% 26.41% 64.28% 32.91%
FreezeO 65.01% 44.83% 65.23% 56.31% 32.67% 35.88% 66.11% 45.22% 28.00% 26.36% 30.59% 60.91% 35.71%
FreezeOS 65.48% 64.90% 3.35% 34.13% 63.78% 2.60% 11.01% 23.60% 63.50% 3.95% 3.64% 4.44% 18.39%
FreezeOS+F 65.07% 35.34% 70.40% 52.87% 24.03% 30.52% 70.94% 41.83% 18.61% 23.83% 25.98% 64.63% 33.26%

Table 6.1: Table showing overview of results of learning procedures as described in Chapter 5.6.2 in fine-
tuning experiments.

The first thing we notice about these results is the difference in accuracy between all approaches
that only learned the new images and the ones also having access to old data. Whereas on the
new dataset, the approaches accuracies on previous classes are very low to be even down to 0,
the results on the old dataset are higher. The accuracy on previous classes is not as high as the
just learned classes, but higher than when no old data is available.

When we take a closer look at the results of the procedures on only the new data, then we can
see that the accuracies of Classic and FreezeOS+F are very similar. Both procedures have a zero
accuracy on previous classes in all sets of the incremental phase. Also, both procedures have
a similar accuracy on the current learned set. These are between 65% to 74%. The combined
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Figure 6.3: Plots showing results of learning procedures of the fine-tuning approach as described in Chapter 5.6.2
on only the first set of classes, the newest set of classes and all sets of classes. The dataset only contains images of
new classes. The data used for each of these plots is shown in Tables C.1, C.1 and C.3.
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Figure 6.4: Plots showing results of learning procedures of the fine-tuning approach as described in Chapter 5.6.2
on only the first set of classes, the newest set of classes and all sets of classes. The dataset containing images of
new and previously learned classes. The data used for each of these plots is shown in Tables C.4, C.4 and C.6.

validation has accuracies that are the currently learned accuracies divided by the number of
sets learned. The FreezeO has similar results. It also does not very well on previously learned
sets. Its’ accuracies are also low, but slightly higher than zero. The FreezeOS procedure shows
different results. Its’ accuracies in Test 1 is, after learning each new set, the highest. The accuracy
of Test 1 does decrease the more sets of classes are learned, but in Train 4 it is still over 25%. The
accuracy of the currently learned set is lower than the other procedures with being between 11%
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and 36% in this experiment. The accuracies on previously learned sets, that are not the first one,
zero or just above zero. On Train 2 and Train 3 has FreezeOS the highest combined accuracy,
however, of Train 4, its’ accuracy is similar to the other ones.

The results where also old data is available, have higher accuracies. Also here, Classic and
FreezeOS+F have similar accuracies. The accuracy of the newest learned set is the highest and
the older a set is, the less the accuracy of it is. However, the results are not the same as when only
new images are available. The FreezeOS+F has the same pattern as Classic, but its accuracies are
slightly higher most of the times. FreezeO follows the same pattern, but its accuracies are higher:
around 8% to 10% higher on Test 1 and 3% to 8% on other previous sets. FreezeO also has the
highest combined accuracy in each set in the incremental phase. The FreezeOS procedure has
the lowest accuracy on the combined validation sets. It does have the highest accuracy on Test
1 in each set, but its accuracies of other previous sets and the current set are low with 2.6% to
4.4% mostly and 11.01% on Test 3 in Train 3.

6.3 AdaBoost Updating Weights vs Not Updating Weights
In these experiments, using the AdaBoost approach, we had one setup where the weights of in-
dividual CNN’s are updated when new data arrives and one that does not update these weights.
The setup is in more detail described in Chapter 6.3. In Table 6.2 is an overview of the results of
this experiment shown. The table is the same way build up as Table 6.1.

Train 1 Train 2 Train 3 Train 4
Test 1 Test 1 Test 2 Test 1-2 Test 1 Test 2 Test 3 Test 1-3 Test 1 Test 2 Test 3 Test 4 Test 1-4

New No update 66.08% 62.44% 9.46% 35.95% 43.41% 0.83% 30.51% 24.66% 29.53% 0.05% 1.95% 31.87% 15.85%
Update 67.94% 0.36% 59.75% 30.06% 15.95% 13.46% 31.78% 20.40% 16.48% 1.10% 2.11% 31.01% 12.59%

Old No update 66.30% 55.17% 53.86% 55.73% 38.11% 29.81% 63.73% 43.88% 31.75% 22.26% 28.45% 60.39% 35.71%
Update 67.01% 54.84% 53.81% 54.33% 39.38% 29.51% 63.43% 44.11% 31.93% 22.49% 30.07% 60.32% 35.84%

Table 6.2: Table showing overview of results of updating and not updating CNN weights in the AdaBoost
classifier as described in Chapter 5.6.3.

The results from this table are plotted in Figure 6.5. In these plots is the result of the new and
old and new data combined. In this plots is each line one of the setups on the new or new and
old data. The y-axis represents the accuracy while the x-axis the number of classes learned. Each
training set adds ten new classes to the model. The first plot shows the accuracy of the model on
the first set of classes. The second, the accuracy of the set of classes most recently added. And
finally, the third shows the combined accuracy of all learned classes. Tables showing the data
used in this figures can be found in Chapter D.

As in the fine-tuning experiments, we can see that accuracies are higher when images from
previous classes are available compared to when only new ones are available. The combined ac-
curacies on new data are much lower than on the when also old data is available. The difference
is as low as half the accuracy.

In the new dataset, we can see that no updating has a higher accuracy on Test 1 in each learned
set. Its accuracies are lower for the current learned and other previously learned sets than the
setup that does updating. No updating has also a higher combined accuracy in all sets in the
incremental phase. The accuracies with update with only new data are not stable. In Train 2 is
the accuracy on Test 1 down to 0.36%, but it goes back up to 16% in the other two sets The other
previous sets excluding the first, go down to around 2% in Train 4.

When old data is available, the accuracies are higher. Both updating and not updating perform
similarly and similar accuracies. The differences are between 0.05% and around 2%. Also, the
combined accuracies are therefore similar.
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Figure 6.5: Plots showing results of updating and not updating CNN weights in the AdaBoost classifier as de-
scribed in Chapter 5.6.3 on only the first set of classes, the newest set of classes and all sets of classes. The data
used for each of these plots is shown in Tables D.1, D.2 and D.3.

6.4 Experiments in Literature
The experiments in the boosting approach by D. Medera and S. Babinec [40] uses a dataset
split parts. This is gradually fed to the model. In every step are four classifiers created. In
their results, the accuracy is between 95.52% and 99.96% in the steps on the training set and
between 91.95% and 95.59% on the testing set. At the end, after training on all four sets, the
model achieves an accuracy of 95.59%. In the IB-CNN approach, by S. Han et al. [57], are the
experiments done on four facial action unit datasets. The final results vary from 41.6% to 95.1%
on the different datasets. Their performances are similar to the state-of-the-art methods they
used to compare their method with.

The fine-tuning approach by C. Käding et al. uses a pre-trained network on the ULSVRC-2010

dataset. In their experiments is the network first trained on ten classes with each 100 images
and then in the incremental phase are five additional classes added one by one. Their results
only use plots. There are no tables and accuracies in the text mentioned. In their experiments,
the best results end up around 70 to 75% accuracy. In Less Forgetting Learning by H. Jung et
al. [60] is the model trained on a dataset A and in the incremental phase on a dataset B. In the
experiments, there are two versions of the model used. From MNIST to SVHN, it has accuracies
of 97.37% and 90.8% respectively on the source dataset and 83.79% and 87.57% on the target
dataset. Learning without Forgetting by Z. Li and D. Hoiem [59] has similar experiments as Less
Forgetting Learning. The model is also trained on a dataset A first and then incrementally on
a dataset B. This is done in the experiments all at once and gradually. The results at the end
on learning the dataset B all at once ranging from 49.8% to 57.7% for ImageNet as the source
network to 57.7% to 99.3% on the target network, where the 99.3% accuracy was achieved on the
MNIST dataset. When the dataset B is added gradually the accuracy of previously learned data
decreases gradually. At the end is the result on the source network just below 50% for Places365

and around 54% for ImageNet. The accuracies of the target networks range between 60% to 80%,
where earlier added parts have a higher accuracy than later added ones.

The iCaRL approach by S. Rebuffi, A. Kolesnikov and C. Lampert [58] has the images of CIFAR-
100 and ILSVRC-2012 added gradually. After each batch is the model evaluated. In the results
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are the accuracies decreasing gradually like in our own experiments. On CIFAR-100 is initially
an accuracy of about 95% achieved. This reduces to 40 to 60% in the various experiments.
The experiments on the ImageNet dataset have similar results. The accuracy decreases when
more classes are added. In the end, the accuracy is around 65% on the smaller ILSVRC-2012 and
around 45% on the full ILSVRC-2012 dataset. The approach by T. Xiao et al. [61] is also evaluated
while the data is gradually added. The animal classes of ImageNet 1K and ImageNet 22K. On
the 1K dataset, the accuracy gradually increases from 58.4% after 10 epochs to 63.2% after 40.
On the larger dataset is an accuracy of 51.48% achieved.



Chapter 7

Conclusion
In this work, we researched on-line and incremental learning in convolutional neural networks.
Most current methods for CNN’s are not designed for incremental learning. In on-line and in-
cremental learning data becomes available gradually. This causes some challenges. Examples of
these challenges are online model parameter adaption, drift, the stability-plasticity dilemma and
model bench-marking. Approaches, who can handle these challenges, have only been researched
very limited for CNN’s.

For our research into this area, we defined a research question. This question is: “How can we
do on-line learning by using convolutional neural networks?”. We broke down this into

1. “What approaches have been proposed and used in neural networks and convolutional
neural networks in the past?”,

2. “In what ways can we learn in an on-line environment with a convolutional neural net-
work?”, and,

3. “Which of these approaches works best?”

7.1 What approaches have been proposed and used in neural
networks and convolutional neural networks in the past?

In Chapter 3, we did a literature research into previous and current work in on-line and in-
cremental learning in neural networks and convolutional neural networks. Neural network ap-
proaches that are used are based on Adaptive Resonance Theory, inspired by AdaBoost, based
on Self-Organizing neural networks, based on radial basis function, using two neural networks
and using extreme learning machines.

The ART based methods are using the Adaptive Resonance Theory in their neural networks.
In the boosting-based methods, is AdaBoost or another boosting algorithm used. Here, multi-
ple neural networks are combined to make a stronger classifier. In the Self-Organizing neural
network are the neural networks adapting to their environment. Their connections change over
time during training. The radial basis based methods use radial basis functions in their neu-
rons. The dual neural network uses one network to retain information while the other is used to
generalize. In the last method are extreme learning machines used to train the neural network.

In convolutional neural networks can incremental approaches be classified into three main
groups: 1. training an ad hoc CNN suitable for the problem, 2. using a pre-trained CNN as
fixed feature extractor in combination with an incremental classifier and 3. fine-tuning a pre–
trained CNN. The naive approach for using a CNN in incremental learning is part of group 1.
Such a naive approach would train a whole new CNN each time new data arrives by using all
new and previous data. It would cost a lot of time to train a full model each time. This approach
does not work in an on-line environment. We found in our literature research two main type of
approaches: boosting inspired and fine-tuning approaches. The boosting based methods are in
group 2, but can also be in group 3 depending on the implementation. The fine-tune methods
are in group 3.

42
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We wrote about two papers on the boosting-based methods. The first one by D. Medera and S.
Babinec [40] uses CNN’s as weak-learners in their boosting classifier. The CNN’s can be kept
simple and undersized. Each time when new data arrives a fixed number of new CNN’s is
trained and added to the boosting classifier. Also, the existing CNN’s are fine-tuned. At test
time, the image is predicted by each of the CNN’s and the final prediction is made based on
the weights of the CNN’s. The other boosting method is proposed by S. Han et al. [57]. In
this approach, only one CNN is used and the boosting is used in the two final layers of the
CNN. These are the boosting and incremental boosting layer. Here the outputs in the last fully
connected layer are used as input for the boosting layer. During training nodes in the boosting
layers are activated. At test time only the incremental boosting layer is used to do predictions.

A basic fine-tuning based method was proposed by C. Käding et al. [4]. It uses a CNN that is
being fine-tuned in the incremental environment. The iCaRL method [58] uses fine-tuning as
one of its’ components. In short, it stores the certain number of images per class. These are
chosen based on how well they represent the class. At prediction the class is chosen to which
set of images, the input image is the closest to. The CNN is here used as a feature extractor.
The Learning without Forgetting [59] method developed a different learning approach. Instead
of regular fine-tuning, they split up the parameters in different groups and fine-tune just certain
parameters. The Less Forgetting Learning [60] approach is similar to this. It does some things a
bit different. One example is the different loss function used. The last approach, proposed by T.
Xiao et al. [61], uses a hierarchical model of CNN’s’. Here is either a current CNN extended or
a new one created when new data arrives.

7.2 In what ways can we learn in an on-line environment with
a convolutional neural network?

In the literature research, we have seen the different types of approaches used in past methods.
We developed in this work three main approaches for on-line learning using convolutional neu-
ral networks. These approaches are fine-tuning, combining convolutional neural networks and
AdaBoost using CNN’s as weak-learner.

In the fine-tuning approaches we use inspiration from among others [4, 58, 59] and combine this
with some of our own ideas. The fine-tuning approaches use two main setups. In the first one,
we start with a large fully connected layer in the CNN (FineL) and start using the nodes of that
layer as classes arrive. The other approach adds nodes to the last fully connected layer when
new classes arrive (FineA).

We proposed four different learning procedures for fine-tuning in these approaches. The pa-
rameters of the CNN are split into shared, old target and new target parameters as explained
in [59]. In the first procedure, Classic, we fine-tune as usual. In the second, FreezeO, we freeze
the old target parameters, during fine-tuning. In the third procedure, FreezeOS, we also freeze
the shared parameters. Finally, in the last procedure, FreezeOS+F, we first fine-tune and in the
third, but then also fine-tune a second time as in the Classic approach.

In the second main approach, we combine CNN’s. We learn a new CNN each time new data
arrives. At test time the predictions of these CNN’s are combined in two different ways. In the
first, all predictions are done in parallel (CcnnP). The class that is the final prediction is the one
with the overall highest prediction. The second way uses an additional class, ’none-of-the-above’
(CcnnN). At test time the CNN’s do a prediction in series. When a CNN predicts the NOA class,
we move to the next CNN. If not, then the predicted class gets to be the final prediction.

The final approach is a boosting inspired approach. We use the SAMME [73, 74] algorithm for
boosting and a CNN as weak-learner. In the CNN’s, we select images based on their weight.
For this, we used a selection algorithm. We will experiment with two ways of using weights. In
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the first, we use a weight per images (AdaIW), whereas, in the second, we use a single weight
of all images of a class (AdaCW). Each time new data arrives, we learn a certain number of new
CNN’s and also the previously learned CNN’s are fine-tuned. In AdaBoost, each weak classifier
has a weight. These weights are used during the final prediction. We proposed two ways of
handling those weights for previous CNN’s when new data arrives. The first is not to update
the weight based on its’ accuracy on the new data. In the other, we do update its’ weight based
on the accuracy of the new data.

7.3 Which of these approaches works best?
Based on the approaches we proposed, we set up three experiments. In the first, we compared
all approaches, in the second, compared the different learning procedures for fine-tuning and, in
the final one, compared updating the weights of CNN’s in the boosting classifier or not updating
them.

All of the approaches have trouble to work well in an incremental environment when they do
not have access to old data. The combined CNN’s setups are more stable than the others. The
CcnnN setup has the best performance on the first set overall, but the worst on the newest set.
Whereas the combined CNN’s setups work well on the first set, the fine-tune and AdaBoost
setups perform better on the newest set. CcnnP had on Set 1 an accuracy of 38.17% and CcnnN
one of 66.36% with 70 classes learned whereas the other approaches had accuracies lower than
1%. However, on the newest set had accuries of 41.66% (FineL), 41.66% (FineA), 36.09% (AdaI)
and 35.21% (AdaCW) with 70 classes learned where the combined CNN’s approaches had accu-
racies of 3.31% (CcnnP) and 0% (CcnnN). In the combined score all approaches perform similar.
Of these approaches, is no one the best approach for incremental learning. There is just a least
worse setup here. In this case, it is CnnnP setup. It remembers the first set almost the best with
38.1%, has the best performance on the other previous sets, with 7.32% with 70 classes learned
where the others have accuracies of 2.28% and lower, and performs best overall with 11.76%.
However, even this approach is not suited well for incremental learning.

The tables are turned when old data is available. The combined CNN’s methods perform similar
to before, but the others perform much better. Both the fine-tune and boosting methods perform
similarly well on the previous sets except the first, the newest set and the combined sets. Their
accuracies with 70 classes learned on the combined sets are 22.97% (FineL), 23.03% (FineA),
21.99% (AdaI) and 22.01% (AdaCW). They outperform the combined CNN’s methods here by
having about double their accuracy, which is 11.61% (CcnnP) and 11.00% (CcnnN). In the sets
2 and 3 (20 and 30 classes learned), FineA performs worst from the fine-tune and AdaBoost
setups, but at the end, it has the highest accuracy with 23.03% versus 21.99% to 22.97% for the
other three approaches (FineL, AdaI, and AdaCW). In this on-line environment are the combined
CNN’s approaches as we implemented them not a recommended approach to use. A reason for
this is that it is designed to generate a new CNN each time new data arrives. This causes that
model has multiple CNN’s that are trained for that class. The other approaches perform better.
The fine-tune and AdaBoost setups are a better choice. The difference in accuracy is small with
a difference of just 1.04%. The AdaBoost methods are considerably more complex than the fine-
tune methods. They have multiple CNN’s where the fine-tuning approaches only have one. So,
in this environment, the fine-tune methods would be better suited than the AdaBoost methods.

When we look at the different learning procedures in fine-tuning, then we can see that all pro-
cedures have trouble in the incremental environment when only images from the newest set of
classes are available. The Classic, FreezeO, and FreezeOS+F do not retain any old information.
The accuracy of the previous sets is in most cases 0% or close to 0%. They do however learn
new data easily. The procedures cause the fine-tuning model to be very unstable. They do suffer
from catastrophic forgetting. The FreezeOS procedure retains the information from the first set.
The accuracy of this does decrease over time. From 63.76% on set 1 to 26.59% after learning
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40 classes. This better performance on the first set does cause it to learn new set less well than
the other procedures. It can also not hold information from previous sets that are not the first
well. From these observations, we can conclude that none of these procedures in these setups
are suitable for incremental learning. The Classic, FreezeO and FreezeOS+F procedures are too
unstable, while the FreezeOS is relatively stable for the first set but too unstable for newer sets.
In this set of setups the FreezeOS even with its’ problems the least worse setup.

The results of the procedures on old and new data look much better. Almost all accuracies
are better. Where most procedures were 0% on the first set after learning new classes, when
old data is available they retained the information to some extent. After learning 40 classes the
accuracies were 17.86% (Classic), 28.00% (FreezeO), 63.50% (FreezeOS) and 18.61% (FreezeOS+F).
The FreezeOS procedure does perform better but still suffers the same problem as when only
new data is available. This setup retains the information from the first class very well, 26.59% on
only new data versus 63.50% when old data is available. The learning of new sets is worse than
when only new information is available. On the combined sets it has only an accuracy of 18.39%
where the other procedures are between 32% and 36%. It has the worst accuracy in the combined
results. The other procedures do much better on the combined sets. They outperform themselves
compared to when only new data is available. Their accuracies are almost double. They have
accuracies of 32.91% (Classic), 35.71% (FreezeO) and 33.26% (FreezeOS+F) versus accuracies
around 16-17% when only new data is available. These procedures follow a similar pattern in
learning and retaining data. The Classic procedure performs worst of these three. It learns
new data well but retains old data less well than FreezeO and FreezeOS+F. The FreezeOS+F
performs similar to Classic but has slightly better accuracies. FreezeO performs the best of
the procedures when some old data is available. It has the highest accuracy of them with
35.71% on the combined sets after learning 40 classes compared to 32.91% (Classic) and 33.26%
(FreezeOS+F). It has slightly worse performance on the newest set than Classic and FreezeOS+F,
but it retains old information. It has the best accuracies on the combined validation sets. In this
environment, would FreezeO be the best of these learning procedures for fine-tuning.

In the boosting setups does no updating retain the first set best. After learning 40 classes on
only new data, the accuracy of no updating on the combined sets is 15.85% where updating has
an accuracy of 12.95%. The accuracy of no updating on the newest set in Train 3 (30 classes) and
4 (40 classes learned) is similar to updating. It does not retain sets that are not the newest or the
first well. In Train 3 updating does seem to retain these middle sets better, but in Train 4 it does
not do much better than no updating. It has their an accuracy of 1.10% on Test 2 and 2.11% on
Test 3 where no updating has respectively 0.05% and 1.95%. Both these setups do not seem to
work well for incremental learning without having access to old information.

The setups perform much better when new data is available. Both methods have in almost all
cases, after learning 40 classes, about double the accuracy as when only new data is available.
In the combined sets, they outperformed the only new by 35.71% (no updating) and 35.84%
(updating) when old data is available versus 15.85% (no updating) and 12.95% (updating) when
only new data is available. The exception is no updating on only new data on the first set. It has
an accuracy of 29.53% where the both with old data available have 31.35% (no updating) and
31.93% (updating). The differences between both setups are small. Both show a similar pattern
of learning new set and retaining old. Neither setup shows being better than the other. In the
combined sets is the difference at the end just 0.13% after learning 40 classes. One is better after
one set is added and the other is better when the next is added.

7.4 Experiments in Literature
It is hard to compare our approaches with the approaches we talked about in the literature. First
of all we tested our approaches in an on-line and incremental environment. In the literature it is
in many cases not clear whether the model had access to old information during the training of
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new data. Also the experimental setups are different and different datasets are used. Some use
small datasets like the Learn++ approach by D. Medera and S. Babinec [40] or the fine-tuning
approach by C. Käding et al. [4]. Others train initially on a dataset A and then incrementally
or on-line on a dataset B such as Less Forgetting learning [60] and Learning without Forgetting
[59]. Because of this we cannot compare our approaches with [40], [4], [60] and [59]. However,
the fine-tuning approach in [4] is similar to our fine-tuning setups. The IB-CNN by S. Han
et al. [57] is an interesting approach, but the dataset is too different from ours to compare
it with our approaches. It is proposed as method for facial action units so we cannot relate
that to a more general case. The iCaRL approach [58] and approach by T. Xiao et al. [61] have
experiments with larger datasets and the data is added gradually. [61] achieves after finishing the
on-line/incremental phase of an accuracy of 51.48%. The iCaRL approach does similar well with
an accuracy of 45% after learning the full ILSVRC-2012 dataset. However, these experiments
were done in niche ways. This means that also these do not lend them themselves to be a
reasonable comparison with our experiments.

7.5 Final Conclusion
A variety of types of approaches have been proposed for neural networks, but only a few for
convolutional neural networks. In convolutional neural networks, the approaches are based on
boosting or fine-tuning. We proposed three main approaches based on this research and our
own ideas. From our results, we have seen that learning without access to old data is hard.
None of our methods could cope well with this environment. There is no best approach from
our approaches we can select. The combined CNN’s methods are too stable on the first set,
while the fine-tune and AdaBoost approaches seem too unstable. We have seen this same thing
in our fine-tune and AdaBoost experiments. Storing some old information gives a boost to the
accuracies of most setups. The combined CNN’s approaches do not work well here either, but
all others do work better. The fine-tune and AdaBoost methods work the best here although also
these accuracies would not be good enough for real-life applications. Unfortunately, we could
not compare our approaches to the approaches we found in the literature. Their experimental
setup or dataset was too different from ours or their experiments were done in a niche way.
However, more research is needed in the area of on-line and incremental learning in CNN’s.
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Future Work
In the literature, we have seen that limited research has been done into incremental learning in
convolutional neural networks. Much more research is needed on the whole spectrum of this
area. This work added research to this area, but more could be done among others based on this
work.

One thing to do could be to test more setups with the approaches form Section 4. For example,
different learning settings. There might be a combination of parameters that causes the results
to be a lot better. Also doing experiments on a larger scale could show different results than
the ones we got. Another thing that could be researched is more variations of fine-tuning. We
compared four different learning procedures, but there might be more. There are also other
freezing options that could be researched. Maybe fine-tuning in an incremental setting would
benefit from freezing just certain layers in the group of shared parameters.

There are also more methods to develop. One of them could be to develop a dynamic convolu-
tional neural network. In such a CNN nodes and layers could be added, removed and, frozen
dynamically depending on how the data changes. It could contain layers in parallel where one
route specializes in certain data while the other specializes in different data. Also, the model
could adopt ideas from other types of neural networks.

There is also more research needed in using boosting methods in combination with convolutional
neural networks in an incremental environment. Currently, only a few papers touched this idea
and more research in how to adapt these models to changing environments is needed. We
did some research on this by comparing weights per image versus per class and by updating a
CNN’s weight versus not updating it.

In this work, we only used AlexNet as a CNN. The AlexNet is a simple CNN to learn from
scratch and relatively fast to learn. However, more CNN’s have been developed. These newer
CNN’s might work better than the AlexNet we used. Examples for other CNN’s are VGG [77]
and ResNet [72]. However, for this research area the incremental nature should be kept in mind.
A CNN should not take a long time to learn or fine-tune. If it did, the environment could
already be changed once it finishes. Also, a large CNN could perform better, but it does need
more memory to be stored. Incremental algorithms have to deal with limited memory. Such a
large CNN or multiple of them might not be able to be stored in that limited memory. Another
research topic could be to design a new CNN from scratch that is designed to work in an on-line
or incremental environment.

For our experiments, we used a subset of the ImageNet dataset. In other papers, the writers also
designed their own dataset. This makes it hard to compare different approaches without doing
the experiments yourself. A big topic in incremental learning with or without CNN’s could be to
develop a standardized way benchmark approaches. Idealistically this approach would be based
on real-life data and consist of different sets of data to test a variety of on-line and incremental
environments. We have seen that a lot of research is possible to add knowledge to this field
of research. More research can be done based on approaches in this work to new methods.
And also more research from using other CNN’s to developing a standardized approach to
benchmark incremental algorithms.
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Full Results Comparing Approaches
In this appendix, we show the full results of the experiment where we compared all approaches.
The experiments are described in Section 5.6.1 and the results in Section 6.1. The full results are
shown in Table A.1 and A.2. These are the results respectively of the approaches on the new and
on the old and new data.

Train Test FineL FineA CcnnP CcnnN AdaIW AdaCW
Train 1 Test 1 68.39% 69.99% 70.67% 66.24% 71.08% 69.78%

Train 2
Test 1 64.86% 52.09% 55.34% 65.75% 67.8% 58.25%
Test 2 10.64% 30.64% 33.93% 10.34% 8.26% 15.86%
Test 1-2 37.75% 41.37% 44.63% 38.05% 38.03% 37.06%

Tain 3

Test 1 49.82% 16.61% 50.16% 65.34% 49.31% 42.91%
Test 2 1.21% 1.51% 28.01% 10.95% 0.97% 4.62%
Test 3 30.11% 43.32% 14.93% 0.67% 27.72% 24.58%
Test 1-3 27.05% 20.48% 31.03% 25.50% 26.33% 25.31%

Train 4

Test 1 25.35% 1.14% 45.86% 65.91% 30.01% 24.58%
Test 2 0.03% 0.08% 26.69% 10.45% 0.08% 1.24%
Test 3 1.53% 1.36% 12.69% 0.71% 2.58% 2.36%
Test 4 37.42% 40.07% 4.95% 0.22% 32.93% 32.59%
Test 1-4 16.08% 10.66% 22.55% 19.32% 16.40% 14.25%

Train 5

Test 1 8.75% 0.11% 37.31% 65.64% 11.33% 10.58%
Test 2 0% 0% 21.63% 10.65% 0% 0.03%
Test 3 0.03% 0.01% 10.11% 0.83% 0.12% 0.11%
Test 4 1.52% 1.45% 3.64% 0.15% 2.15% 1.24%
Test 5 43.85% 44.71% 8.40% 0.06% 38.66% 38.04%
Test 1-5 10.83% 8.28% 16.22% 15.46% 10.73% 10.04%

Train 6

Test 1 1.33% 0% 35.73% 65.85% 2.82% 1.585

Test 2 0% 0% 18.81% 10.98% 0% 0%
Test 3 0% 0% 10.73% 0.86% 0% 0.01%
Test 4 0% 0.06% 3.28% 0.3% 0.05% 0.06%
Test 5 3.06% 4.16% 7.81% 0.12% 3.55% 2.68%
Test 6 43.47% 44.36% 1.45% 0% 37.2% 34.41%
Test 1-6 7.98% 7.93% 12.97% 13.02% 7.27% 6.45%

Train 7

Test 1 0.09% 0% 38.17% 66.36% 0.83% 0.37%
Test 2 0% 0% 15.08% 10.22% 0% 0%
Test 3 0% 0% 9.51% 0.75% 0% 0%
Test 4 0% 0% 3.15% 0.31% 0% 0%
Test 5 0.16% 0.26% 7.28% 0.1% 0.35% 0.16%
Test 6 9.01% 7.64% 1.59% 0% 5.40% 4.69%
Test 7 41.66% 41.32% 3.31% 0% 36.09% 35.21%
Test 1-7 7.28% 7.03% 11.76% 11.11% 6.18% 5.78%

Table A.1: Results of all approaches on only the new data

In the tables is each set of rows a training iteration. Each group has a row for each test set and
the combined test set. Each column represents the accuracy results of one setup.
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Train Test FineL FineA CcnnP CcnnN AdaIW AdaCW
Train 1 Test 1 70.54 70.14 69.84% 64.74% 71.15% 71.10%

Train 2
Test 1 47.01% 41.22% 62.47% 64.61% 58.85% 57.99%
Test 2 66.93% 69.03% 28.37% 11.25% 54.04% 55.76%
Test 1-2 56.97% 55.12% 45.42% 37.93% 56.45% 56.88%

Tain 3

Test 1 36.04% 29.71% 59.51% 65.13% 44.19% 44.78%
Test 2 36.59% 37.74% 27.70% 11.91% 30.97% 30.82%
Test 3 65.34% 66.86% 8.81% 0.7% 61.11% 62.03%
Test 1-3 45.99% 44.77% 32.01% 25.91% 45.43% 45.88%

Train 4

Test 1 28.90% 21.79% 57.66% 65.22% 33.68% 34.42%
Test 2 26.18% 25.79% 27.45% 11.78% 20.53% 19.84%
Test 3 26.36% 29.26% 8.14% 0.59% 25.80% 25.08%
Test 4 62.65% 62.96% 4.00% 0.03% 59.39% 59.94%
Test 1-4 36.02% 34.95% 24.31% 19.41% 34.85% 34.82%

Train 5

Test 1 24.36% 17.12% 55.66% 65.00% 27.04% 29.73%
Test 2 22.05% 21.11% 26.53% 11.73% 16.935 16.06%
Test 3 18.84% 21.56% 7.93% 0.65% 17.16% 17.26%
Test 4 21.38% 34.89% 3.93% 0.04% 22.21% 21.79%
Test 5 67.43% 66.94% 5.09% 0.01% 66.31% 65.91%
Test 1-5 30.81% 30.33% 19.83% 15.49% 29.93% 30.15%

Train 6

Test 1 19.13% 11.88% 43.87% 64.39% 22.23% 22.79%
Test 2 21.16% 18.94% 19.08% 11.89% 15.92% 14.94%
Test 3 15.26% 16.18% 5.95% 0.64% 11.83% 11.82%
Test 4 12.93% 15.33% 2.29% 0.1% 12.14% 13.08%
Test 5 20.29% 25.48% 4.36% 0.01% 22.30% 23.19%
Test 6 70.91% 70.09% 5.78% 0% 69.06% 68.44%
Test 1-6 26.61% 26.32% 13.55% 12.84% 25.58% 25.71%

Train 7

Test 1 14.36% 8.76% 43.93% 64.95% 16.03% 16.77%
Test 2 18.10% 16.13% 18.38% 11.37% 12.47% 12.11%
Test 3 13.32% 14.04% 5.64% 0.65% 10.64% 10.24%
Test 4 11.66% 11.97% 2.08% 0.04% 9.26% 9.52%
Test 5 13.36% 16.18% 3.27% 0.02% 13.99% 13.84%
Test 6 21.41% 26.01% 5.34% 0% 24.36% 24.16%
Test 7 68.71% 68.21% 2.64% 0% 67.21% 67.41%
Test 1-7 22.97% 23.02% 11.61% 11.00% 21.99% 22.01%

Table A.2: Results of all approaches on the new and old data.



Chapter B

Tables Comparing Approaches
The tables in this chapter show the results used in the Figures 6.1 and 6.2 in Chapter 6.1. The
captions below each table refer to which plot the table is related to.

Number of added classes
Approach 10 20 30 40 50 60 70
FineL 68.39% 64.86% 49.82% 25.35% 8.7% 1.33% 0.09%
FineA 69.66% 52.09% 16.61% 1.14% 0.11% 0% 0%
CcnnP 70.67% 55.34% 50.16% 46.86% 37.31% 35.73% 38.17%
CcnnN 66.24% 65.75% 65.34% 65.91% 65.64% 65.85% 66.36%
AdaI 71.08% 67.80% 49.31% 30.01% 11.33% 2.82% 0.83%
AdaCW 69.78% 58.25% 42.91% 24.58v 10.58% 1.59% 0.37%

Table B.1: Data of plot Set 1 on only new data in Figure 6.1 (a).

Number of added classes
Approach 30 40 50 60 70
FineL 1.21% 0.795% 0.516% 0.765% 1.834%
FineA 1.51% 0.72% 0.486% 1.06% 1.504%
CcnnP 28.01% 19.69% 11.79% 10.16% 7.32%
CcnnN 10.95% 5.81% 2.91% 3.07% 2.28%
AdaI 0.97% 1.32% 0.756% 0.90% 1.15%
AdaCW 4.62% 1.80% 0.46% 0.69% 0.97%

Table B.2: Data of plot Previous sets except first set on only new data in Figure 6.1 (b).

Number of added classes
Approach 10 20 30 40 50 60 70
FineL 68.39% 10.64% 30.11% 37.42% 43.85% 43.47% 41.66%
FineA 69.66% 30.64% 43.32% 40.07% 44.71% 44.36% 41.66%
CcnnP 70.67% 33.93% 14.93% 4.95% 8.40% 1.45% 3.31%
CcnnN 66.24% 10.34% 0.67% 0.22% 0.06% 0% 0%
AdaIW 71.08% 8.26% 27.72% 32.93% 38.66% 37.2% 36.09%
AdaCW 69.78% 15.86% 24.58% 32.59% 38.04% 24.41% 35.21%

Table B.3: Data of plot Newest set on only new data in Figure 6.1 (c).
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Number of added classes
Approach 10 20 30 40 50 60 70
FineL 68.39% 37.75% 27.05% 16.08% 10.83% 7.98% 7.289%
FineA 69.66% 41.37% 20.48% 10.66% 8.28% 7.93% 7.03%
CcnnP 70.67% 44.63% 31.03% 22.55% 16.22% 12.97% 11.76%
CcnnN 66.24% 38.05% 25.50% 19.32% 15.46% 13.02% 11.11%
AdaIW 71.08% 38.02% 26.33% 16.40% 10.73% 7.27% 6.45%
AdaCW 69.78% 37.06% 25.31% 14.25% 10.04% 6.45% 5.78%

Table B.4: Data of plot Combined sets on only new data in Figure 6.1 (d) of the comparing approaches
experiment.

Number of added classes
Approach 10 20 30 40 50 60 70
FineL 70.54% 47.01% 36.04% 28.90% 24.36% 19.13% 14.36%
FineA 70.54% 41.22% 29.71% 21.79% 17.12% 11.88% 8.79%
CcnnP 69.84% 62.42% 59.51% 57.66% 55.66% 43.87% 43.87%
CcnnN 64.74% 64.61% 65.13% 65.00% 64.39% 64.39% 64.95%
AdaIW 71.15% 58.85% 44.19% 33.68% 27.04% 22.23% 16.03%
AdaCW 69.78% 57.99% 44.78% 34.42% 29.73% 22.79% 16.77%

Table B.5: Data of plot Set 1 on new and old data in Figure 6.2 (a) of the comparing approaches experiment.

Number of added classes
Approach 30 40 50 60 70
FineL 36.59% 26.27% 20.76% 17.41% 15.57%
FineA 7.74% 27.53% 25.85% 18.98% 16.87%
CcnnP 27.7% 17.795% 12.796% 7.92% 6.942%
CcnnN 11.25% 6.185% 3.945% 3.16% 2.416%
AdaIW 0.97% 23.165% 18.768% 15.55% 14.144%
AdaCW 0.82% 22.46% 18.37% 15.76% 13.974%

Table B.6: Data of plot Previous sets except first set on new and old data in Figure 6.2 (b) of the comparing
approaches experiment.

Number of added classes
Approach 10 20 30 40 50 60 70
FineL 70.54% 66.93% 65.34% 62.65% 67.43% 70.91% 68.71%
FineA 70.14% 69.03% 62.96% 66.94% 66.94% 70.09% 68.21%
CcnnP 69.84% 28.37% 8.81% 4.00% 5.09% 5.78% 2.64%
CcnnN 64.74% 11.25% 0.7% 0.03% 0.01% 0% 0%
AdaIW 71.15% 54.04% 61.11% 59.39% 66.31% 69.06% 67.21%
AdaCW 71.10% 55.76% 62.03% 59.94% 65.91% 68.44% 67.41%

Table B.7: Data of plot Newest set on new and old data in Figure 6.2 (c) of the comparing approaches
experiment.
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Number of added classes
Approach 10 20 30 40 50 60 70
FineL 70.54% 56.97% 45.99% 36.02% 30.81% 26.61% 22.97%
FineA 70.14% 55.12% 44.77% 34.95% 30.33% 26.32% 23.03%
CcnnP 69.84% 45.42% 32.01% 24.31% 19.83% 13.55% 11.61%
CcnnN 64.74% 37.93% 25.91% 19.41% 15.49% 12.84% 11.00%
AdaIW 71.15% 65.45% 45.43% 34.85% 29.93% 25.58% 21.99%
AdaCW 71.10% 56.88% 45.88% 34.82% 30.15% 25.71% 22.01%

Table B.8: Data of plot Combined sets on new and old data in Figure 6.2 (d) of the comparing approaches
experiment.



Chapter C

Tables Comparing Fine-Tuning
Setups Figures
The tables in this chapter show the results used in the Figures 6.3 and 6.4 in Chapter 6.2. The
captions below each table refer to which plot the table is related to.

Number of added classes
Procedure 10 20 30 40
Classic 65.24% 0% 0% 0%
FreezeO 66.55% 1.04% 0.01% 0%
FreezeOS 63.67% 61.62% 46.49% 26.59%
FreezeOS+F 66.23% 0% 0% 0%

Table C.1: Data of plot Set 1 on only new data in Figure 6.3 (a) of the comparing fine-tune setups experi-
ment.

Number of added classes
Procedure 10 20 30 40
Classic 65.24% 73.23% 73.60% 67.45%
FreezeO 66.55% 73.37% 73.13% 66.88%
FreezeOS 63.67% 10.69% 32.40% 35.97%
FreezeOS+F 66.23% 73.22% 74.09% 67.40%

Table C.2: Data of plot newest set on only new data in Figure 6.3 (b) of the comparing fine-tune setups
experiment.

Number of added classes
Procedure 10 20 30 40
Classic 65.24% 36.62% 24.53% 16.94%
FreezeO 66.55% 37.21% 24.50% 16.86%
FreezeOS 63.67% 36.15% 26.95% 16.25%
FreezeOS+F 66.23% 36.61% 24.71% 16.85%

Table C.3: Data of plot Combined sets on only new data in Figure 6.3 (c) of the comparing fine-tune setups
experiment.

Number of added classes
Procedure 10 20 30 40
Classic 65.53% 35.44% 22.20% 17.86%
FreezeO 65.01% 44.83% 32.67% 28.00%
FreezeOS 65.48% 64.90% 63.78% 63.50%
FreezeOS+F 65.07% 35.34% 24.03% 18.61%

Table C.4: Data of plot Set 1 on new and old data in Figure 6.4 (a) of the comparing fine-tune setups
experiment.
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Number of added classes
Procedure 10 20 30 40
Classic 65.53% 70.04% 69.24% 64.28%
FreezeO 65.01% 65.23% 66.11% 60.91%
FreezeOS 65.48 % 3.35% 11.01% 4.44%
FreezeOS+F 65.07% 70.40% 70.94% 64.63%

Table C.5: Data of plot newest set on new and old data in Figure 6.4 (b) of the comparing fine-tune setups
experiment.

Number of added classes
Procedure 10 20 30 40
Classic 65.53% 52.80% 39.81% 32.91%
FreezeO 65.01% 56.31% 45.22% 35.71%
FreezeOS 65.48% 34.13% 23.60% 18.39%
FreezeOS+F 65.07% 52.87% 41.83% 33.26%

Table C.6: Data of plot Combined sets on new and old data in Figure 6.4 (c) of the comparing fine-tune
setups experiment.



Chapter D

Tables Adaboost Setups Figures
The tables in this chapter show the results used in the Figure 6.5 in Chapter 6.3. The captions
below each table refer to which plot the table is related to.

Number of added classes
Method 10 20 30 40
No updating (new) 66.08% 62.44% 43.41% 29.53%
Updating (new) 67.94% 0.36% 15.95% 16.48%
No update (old) 66.30% 55.17% 38.11% 31.35%
Updating (old) 67.01% 54.84% 39.38% 31.93%

Table D.1: Data of plot Set 1 on only new and new and old data in Figure 6.5 (a) of the AdaBoost comparing
updating vs. not updating experiment.

Number of added classes
Method 10 20 30 40
No updating (new) 66.08% 9.46% 30.51% 31.87%
Updating (new) 67.94% 59.75% 31.78% 31.01%
No update (old) 66.30% 53.86% 63.73% 60.39%
Updating (old) 67.01% 53.81% 63.43% 60.32%

Table D.2: Data of plot Newest set on only new and new and old data in Figure 6.5 (b) of the AdaBoost
comparing updating vs. not updating experiment.

Number of added classes
Method 10 20 30 40
No updating (new) 66.08% 35.95% 24.66% 15.85%
Updating (new) 67.94% 30.06% 20.40% 12.95%
No update (old) 66.30% 55.73% 43.88% 35.71%
Updating (old) 67.01% 54.33% 44.11% 35.84%

Table D.3: Data of plot Combined sets on only new and new and old data in Figure 6.5 (c) of the AdaBoost
comparing updating vs. not updating experiment.
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