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ABSTRACT
A lot of research has been done in the field of image
classification. Image classification id the field of ma-
chine learning where the computer determines what the
object or objects in the image are. There are a wide
variety machine learning methods are designed. They
can loosely be divided in ‘old’- and ‘new’-school meth-
ods. There are not many papers comparing the devel-
oped methods. The developers of a methods usually
compare their method with others, but can we trust
that their comparison is unbiased. In this work, we will
compare different configurations of the AlexNet convo-
lutional neural network and compare one configuration
of the AlexNet with a Fisher Vector neural network.
The different configurations of the CNN consist out of
three different feature pooling methods, average, maxi-
mum and stochastic pooling and four different data aug-
mentation combinations, no, crop, flip and crop and flip
augmentation.

We used the Caffe deep learning framework to set up
and implement the various network configurations. Both
the Fisher Vector and data augmentation are imple-
mented within the Caffe framework. We used twelve dif-
ferent setups for our experiments. We ran them by using
the ImageNet LSVRC-2012 dataset consisting out of 1.2
million training and 50,000 validation images of 1,000
different categories. For the experiments of with the
Fisher Vector neural network we used a 10,000 and 1,000
(training respectively validation) images large sample of
the ILSVRC-2012.

Unfortunately, we could not get the Fisher neural net-
work working and training. Thus, we do not have any
results for those experiments. Fortunately, we do have
results for the other experiments. There was a clear
difference in results with the different pooling methods.
Maximum pooling preformed best with an error rate
of 21.8% with crop and flip augmentation. There was
no clear best augmentation over all the feature pooling
methods.

1. INTRODUCTION
In this work, we will compare several configurations of
convolutional neural networks as well as comparing a
convolutional neural network setup with the Fisher Vec-
tor in combination with a neural network.

One of the problems, that systems based on convolu-
tional neural networks and/or Fisher Vector, is image
classification. Image classification is a problem in com-
puter vision. It is the task of extracting information
from the image and classifying based on that informa-
tion what the topic of the image is.

The difficult part in image classification is how to clas-
sify the image. The computer ’sees’ the image just as
a matrix of numbers. This matrix has the width and
height of the image. The depth of the matrix deter-
mines whether the image is grey-value or RGB.

The problem of image classification is a trivial prob-
lem in a wide variety of applications. These appli-
cations include among others image search in a im-
age database and processing and identifying objects on
satellite images. In the first example application, there
is a database containing images. The system searches
through this database to obtain images with particu-
lar visual content. There are satellite images involved
in the second example. In this application, the system
needs to classify what the objects on the image or sub-
image are.

Classifying by hand is possible and the human brain is
fast, but it is impossible to keep up doing this with hu-
mans. The amount of new data is too large for humans.
Also, letting a humans search through a database con-
taining millions or maybe even billions of images is too
slow. Computers are fast and do not get tired. How-
ever, a computer ’sees’ the image just as a sequence of
bits. It needs some kind of method to classify them.

There is a wide variety machine learning methods to
classify the topic of an image. These methods can loosely
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be divided in ’old’- and ’new’-school methods as well as
in supervised and unsupervised learning methods. The
old-school methods include Fisher Vector[13] and bag
of words (also known as bag of features), whereas the
new-school methods include methods based on convo-
lutional neural networks. The convolutional neural net-
works and support vector machines (used in combina-
tion with Fisher vector) are supervised learning meth-
ods. Gaussian mixture models (used in earlier stage of
Fisher vector) is an unsupervised learning method.

In supervised learning methods, the system knows what
the answer should be. The parameters are adjusted
based on the error of the estimation compared to the de-
sired result. Unsupervised methods do not know what
the desired result is. They ’learn’ based on the differ-
ences in the input.

In this work, we will compare several configurations of
the convolutional neural network as well as comparing
the convolutional neural network with a Fisher Vec-
tor neural network. In the first part we compare sev-
eral configurations of feature pooling and data augmen-
tation methods on the AlexNet[6] convolutional neu-
ral network. In these experiments the feature pool-
ing methods include maximum, average and stochastic
pooling. The data augmentation methods consist of flip
augmentation, crop augmentation and a combination of
both. In the second part, we compare a configuration of
the AlexNet with a Fisher Vector in combination with a
neural network. The Caffe[4] deep learning framework
is used for the experiments.

Papers in the subject of image classification are usually
either from the old-school or new-school. When the
writers compare their variant of a method they com-
pare it to other methods. However, those experiments
could be biased to the method designed by the writ-
ers of the paper. This work does not present a new
method, but gives an unbiased comparison between the
old-school Fisher vector and new-school feature pooling
in combination with convolutional layers. This is done
with the well-known dataset ILSVRC 2012.

This work will continue with a section about the related
work. Followed by a chapter describing the theoretical
side of the used methods. After that a chapter about the
experiments and their results. Finally, chapters with
the conclusion and discussion.

2. RELATED WORK
In both the ’old’- and ’new’-school areas are a lot of
work done and are many papers published. In this sec-
tion we will highlight a few them, which were used for
this work.

The paper written by Krizhevsky et al. [6] introduces
the AlexNet convolutional neural network. This is a
well-known convolutional neural network. At the time
of publishing it was one of the deepest CNNs. The net-
work was designed to work with large datasets such as
the ILSVRC-2010 and ILSVRC-2012.

An evaluation of subsampling versus maximum pooling
was done in work by Dominik Scherer et al. [14]. They
compared both methods in a CNN and concluded that
maximum pooling was superior to subsampling. In an-
other paper by Matthew Zeiler et al. [17] is stochastic
pooling introduced. They replace the conventional de-
terministic pooling, such as maximum pooling, with a
stochastic procedure. In their experiments, they com-
pared stochastic pooling with maximum and average
pooling and showed that their method has the lowest
error during test time.

In the paper by Jorge Sánchez et al. [13] is the im-
age classification method Fisher Vector introduced. It
was introduced as an alternative for the Bag-of-Visual
words approach. Based on the paper by Jorge Sánchez
et al. [13], have Florent Perronnin et al. [9] proposed a
hybrid architecture combining Fisher Vector with neu-
ral network. Their network contains an unsupervised
set of layers, where Fisher Vectors are computed, and
a supervised set, several fully connected layers. They
obtained an accuracy just shy of the one achieved by
the AlexNeton the ILSVRC-2012 dataset.

In work by Ken Chatfield et al. [1] is a wide variety
of settings for CNNs and Fisher Vector neural networks
compared. This similar of what we will do in this work.

A framework for machine learning called Caffe is intro-
duced by Yangqing Jia et al. [4]. It is a C++ library
containing bindings for training and deploying general-
purpose convolutional neural networks and other deep
models.

In our work we will use the AlexNet as base for our
experiments as convolutional neural network. In this
CNN we will compare different feature pooling methods
similar to the work of Matthew Zeiler et al. [17] as
well as several data augmentation methods. We will use
the Fisher Vector as representative for the ’old’-school
methods. Our setup with the Fisher Vector is based on
the work of Florent Perronnin et al. [9] although we
will use the Caffe framework.

3. METHODS
Before going into details of the compared methods, we
will give a brief overview of neural networks and con-
volutional neural networks. At the end of this chapter
we will also describe data augmentation briefly. This
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method is used in the experiments.

3.1 Neural Networks
A neural network is an artificial neural network inspired
by the biological equivalents. It is used to estimate or
approximate functions. It is a machine learning method.
Thus, it has a learning phase, where all parameters in
the model are trained. After it has been trained it can
be used on other (similar) input.

The most basic neuron in a neural network is the per-
ceptron. The output is either 1 or 0. Each input xi
has a weight wi. The output is 1 if

∑
i wixi is greater

or equal to some threshold value. If it is smaller, the
output is 0. This is shown in Equation 1. The allowed
input of a perceptron is either 0 or 1. A visualization
of the perceptron is shown in Figure 1.

output =

{
0 if

∑
j wjxj ≤ threshold

1 if
∑
j wjxj > threshold

(1)

x2

x1

w2

w1

Figure 1: Example perceptron

Another type of neurons is the sigmoid neuron. This
type neuron allows real value inputs between 0 and 1.
A sigmoid neuron has similar to a perceptron weights
on every input and an overall bias. The output value
of a sigmoid neuron can be simplified by the equation
shown in Equation 2,

σ(z) ≡ 1

1 + e−z
≡ 1

1 + exp(−
∑
j wjxj − b)

, (2)

where σ(z) = σ(w · x+ b).

An example of a neural network is shown in Figure 2.
The left-most layer is called the input layer. The mid-
dle layer is called a hidden layer. The hidden middle
layer contains the sigmoid (or perceptron) neurons. At
the end, the right-most layer, is the output layer. This
example has two input, three hidden and one output
neuron.

The input layer is a very simple layer. Each neuron in
this layer receives an input value and redirects it to its
output without manipulating it. The output layer is
the output of the neural network. The neurons in this
layer either say true or false depending on the criterion

they are set on. However, they can also do the final cal-
culation and output the probability that their criterion
is true based on the output of the last function. This
probability is usually a value between 0 and 1.

Hidden
layer

Input
layer

Output
layer

Figure 2: Example of a simple neural network. It has two
input, three hidden and one output layer.

The neural network in Figure 2 is called a single-layer
network. A neural network can have more than one
layer. One type of such networks is called multi-layer
perceptrons (MLPs). Both these networks are feed-
forward neural networks, which means that there are
no loops in the network[8].

3.2 Convolutional Neural Networks
Convolutional neural networks are neural networks with
multiple layers. These layers include layers that are not
fully connected. One reason for this is too reduce the
number of weights the network has. The difficulty with
increasing the number of layers is, that the more layers
the network has, the more connections and thus param-
eters the network has. All these parameters need to be
trained, which can make training very slow. Convolu-
tional neural networks are often used in image and video
recognition.

3.2.1 Layers
The not fully connected layers are called convolutional
layers. Some of these layers are followed subsampling or
pooling layers. The convolutional layer gets an image
or a previous feature map as input. It contains small
groups or collections of neurons. These groups of neu-
rons are called (local) perceptive fields. Each perceptive
field has a certain size, K ×K. Each of the K2 inputs
have a weight. The weights are shared. Which means
that the filter, the small group of neurons, has the same
weights. So, the filter moves over the input ’image’ of
the layer and at any point the weights for each input is
the same. The output of a convolutional layer are a set
or stack of feature maps.

The final layers of a convolutional neural network are
usually fully connected layers. These layers are also
sometimes called classification layers. The fully con-
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nected layers combine the feature maps from the final
convolutional or pooling layer into a one-dimensional
vector. The final layer of these fully connected layers
outputs a vector containing the probability for each of
the categories in case of the classification problem[8, 2,
14, 3].

The convolutional layers can make use of Rectified-Linear
unit (ReLU). It is an activation function defined as:
f(x) = max(x, 0). So, it computes the output as x if
x > 0. They can also use Local Response Normalization
(LRN). It is used to normalize the output of the ReLU.
The normalized activity bix,y is given by the expression

bix,y = aix,y/

k + α

min(N−1,i+n/2)∑
j=max(0,i−n/2)

(ajx,y)2

β

, (3)

where aix,y is the activity of kernel i at position (x, y)
after applying ReLU, N the number of kernels. The
sum in the expression runs over n adjacent kernel maps
at the same spatial position. The constants k, n, α
and β are hyper-parameters and we used k = 1, n = 5,
α = 10−4 and β = 0.75 as described in Krizhevsky et
al. [6] (except for the value of k, which is by default 1
in Caffe1).

3.2.2 Feature Pooling
Recent convolutional networks have a pooling layer af-
ter some of their convolutional layers. The pooling lay-
ers reduce the resolution of feature maps generated by
the convolutional layers. Thus, the pooling layers are a
aggregation method for a local neighborhood.

There are several pooling methods available for use in
convolutional neural networks. The most popular one
is maximum pooling. Some of the other options are av-
erage (or mean) pooling and stochastic pooling.

The pooling is done by using the n×n filter of the cor-
responding pooling method. These filters are applied
in combination with a certain stride. The stride is the
’step-size’ of the filter. A stride of 0 would mean that
the filter stays forever at the same place. Using a stride
of 2 causes the filter to do steps of 2 in the y and x
direction.

For example, assume we have a feature map of size 4×4,
a filter of 2 × 2 and a stride of 2, then we would have
four places where the filter is applied. This is shown in
Figure 3. The resulting reduced feature map is reduced
by a factor two and has a size of 2× 2.

1See: http://caffe.berkeleyvision.org/tutorial/layers.html

Figure 3: Input feature map for feature pooling

In Equation 4 the output size of a filter is shown. In
this equation is W the length of the input image, K
the size of the filter, P the padding and S the stride.
Where padding is the number of pixels added at each
side of the image. If we would apply this to the feature
map of Figure 3, then the W is 4, K is 2, P is 0 and S
is 2. When we use these number in Equation 4, we end
up with (4− 2 + 0)/2 + 1 and a output size of 2.

O =
W −K + 2P

S
+ 1 (4)

The one of the most popular filters is the maximum
pooling filter. The maximum pooling filter chooses the
maximum value of the input for each pooling region.
An example is shown of this in Figure 4.

Figure 4: Example of maximum pooling. The maximum
value of each region is chosen

In average pooling (also called mean pooling), the av-
erage for each pooling region of the input is calculated.
Equation 5 shows the formula for this filter and Figure
5 is an example of this.

bp,q =

∑K
i=0

∑K
j=0 ai,j

K2
(5)

Stochastic pooling is a pooling method that randomly
picks the activation within the pooling region in line
with a multinomial distribution. This distribution is
given by the activities within the current pooling re-
gion. There are two variants of stochastic pooling. One
of them is used during training, whereas the other dur-
ing test time.

The first step of the variant used during training time
is to compute each probability pi for each region j in
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Figure 5: Example of average/mean pooling. The average
value for each region of the input is calculated.

the pooling region. This probability is computed using
the equation

pj =
ai∑

k∈Rj
ak
. (6)

Then a location l from the multinomial distribution
based on p is chosen. This pooled activation can be
written as

sj = al where l ∼ P (p1, . . . , p|Rj |. (7)

This version of stochastic pooling introduces noise dur-
ing test time. So, an alternative is used. This version
is a probabilistic form of averaging. The activations are
weighted by their probability pi and summed

sj =
∑
i∈Rj

piai. (8)

Figure 6 shows an example of the stochastic pooling. It
shows in the first image the activations in the pooling
region. In the second image, the computed probabilities
for each region j within the pooling region (each region
is a different color). Finally the last image shows the
sampled activation (a) and probabilistic form of aver-
aging (b).

3.3 Fisher Vector
The Fisher vector is an image representation that is de-
signed for high classification accuracy and is sufficiently
efficient for large-scale image processing. It is a method
based on the Fisher Kernel (FK). The Fisher Kernel is a
method combining generative and discriminative meth-
ods. A sample’s is characterized by its deviation, which
is measured by the computed gradient of the sample
log-likelihood, from the generative model. The result is
a vector representation called the Fisher Vector.

Generating a Fisher Vector happens in several steps.
The first step is to generate the samples from the im-
ages. We choose to use SIFT feature descriptors for this.
Using these feature descriptors, a generative model, a
Gaussian Mixture Model (GMM) is generated. In the
last step are the Fisher Vectors generated. It uses the
SIFT feature vectors and the Gaussian mixture means,
covariance’s and prior probabilities.

3.3.1 SIFT and PCA
As described above, we use SIFT features as samples
of the image for the Fisher Vector. Scale-invariant fea-
ture transform is an algorithm to detect and describe
features in an image. It was first published by David
Lowe in 1999[7].

There are four major steps in SIFT. The first step is to
detect scale-space extrema. The system searches over
all image locations and identifies potential interesting
points. The next step is to localize keypoints. A number
of locations is selected based on measures of their sta-
bility. Each of the selected ones get a detailed model fit.
In the third step are one or more orientations assigned
to each location. At this step are locations referred as
keypoints. The future operations are performed on the
image data transformed by these assigned orientations
as well as scale and location. The last step is to generate
a keypoint descriptor based local image gradients at the
selected scale in the region around each keypoint. This
keypoint descriptor is usually a 128 dimension vector[7].

The writer of the 2004 paper about SIFT mentions that
an image with a typical image size of 500 × 500 pixels
gives about 2,000 features. Since we are using 256×256
pixels images, we can expect to have about 525 features.
All these feature points have 128 dimensions. This re-
sults in 525 · 128 = 67, 200 values per image. Using this
on a large dataset can result in a large memory usage
and long computation times.

A solution to this problem is principal component anal-
ysis (PCA). By using PCA the dimensionality of SIFT
features can be reduced. A method doing this is called
PCA-SIFT[15]. We use something similar. We generate
first SIFT-features and then reduce their dimensional-
ity by using PCA. PCA-SIFT uses a slightly different
approach to generate its feature points. According to
the writers of the papers by Chatfield et al.[1], the num-
ber of dimensions can be reduced to 80. This reduction
results in 525× 80 = 42, 000 values per image.

PCA uses an orthogonal transformation to convert the
set of SIFT features into a new set of values that has a
dimensionality equal or lower than the original set. This
new set of variables is called principal components. This
set is defined such that the first principal component has
the largest possible variance[5].

3.3.2 Gaussian Mixture Model
The Gaussian mixture model of a weighted sum K com-
ponent Gaussian densities. The Gaussian parameters
are denoted by λ = {wk,µk,Σk, k = 1, . . . ,K}, where
wk, µk and Σk are respectively the mixture weight, the
mixture mean and the mixture covariance vector. The
Gaussian mixture model is given by the equation
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Figure 6: Example of stochastic pooling. The first image is the input feature map. The second image the probabilities of
each value within a region. The third part are the resulting 2 × 2 pooled feature maps, where (a) is the one during training
and (b) the one at test time.

uλ(x) =

K∑
k=1

wkuk(x), (9)

where x = {xt, t = 1, . . . , T} is the D-dimensional sam-
ple of feature vectors, wk, k = {1, . . . ,K}, are the mix-
ture weights and uk is the Gaussian k. This Gaussian
k is given by the equation

uk(x) =
1

(2π)D/2|Σk|1/2
exp

[
−1

2
(x− µk)′Σ−1k (x− µk)

]
.

(10)
This equation has the constrain

∀k : wk ≥ 0,

K∑
k=1

wk = 1. (11)

The GMM parameters are estimated on a dataset by a
Expectation-Maximisation algorithm. This algorithm is
used to optimize a Maximum Likelihood (ML) criterion.
This means, it wants to find the model parameters that
maximize the likelihood of the GMM given the training
data. The GMM likelihood can be written as

p(X|λ) =

T∏
t=1

p(xt|λ) (12)

where X = {xt, t = 1, . . . , T} is the training data.

The EM algorithm is an unsupervised learning method
that iterates between the E (expectation) and M (max-
imization) step. In the E-step the model is updated by
using the current estimations of the GMM parameters.
This is defined for component k and vector t as

qtk =
wkuk(xt)∑K
l=1 wlul(xt)

, (13)

where uk(xt) and ul(xt) are the Equation 9. The GMM
parameters are in the M-step re-estimated. It uses the
model generated in the M-step. The re-estimation is
done with the equations for the weights

wk =

∑T
t=1 qtk∑T

t=1

∑K
l=1 qtl

, (14)

means

µk =

∑T
t=1 qtkxt∑T
t=1 qtk

(15)

and covariances

Σk =

∑T
t=1 qtk(xt − µk)(xt − µk)T∑T

t=1 qtk
(16)

The algorithm can either be initialized with a random
initialization of the GMM parameters or it can be ini-
tialized by pre-clustering with a k-means algorithm[11].

3.3.3 Fisher Vector
Let x = {xt, t = 1 . . . T} be a sample of T D-dimensional
PCA reduced SIFT feature vectors. The Fisher Vector
of this sample X is

G x
λ =

T∑
t=1

Lλ∇λ log uλ(xt). (17)

The Fisher Vector is the sum of normalized gradient
statistics for each descriptor. The Lλ is the square-root
of the inverse of FIM, Fisher Information Matrix. The
FIM is diagonal as showed in Sánchez et al. [13]. The
gradients of a single descriptor xk with the parameters
of the GMM, λ = {αk,µ,Σk, k = 1, . . . ,K}, are

∇αk
log uλ(xt) = qtk −wk, (18)

∇µk
log uλ(xt) = qtk

(
xt − µk

σ2
k

)
, (19)

∇σk
log uλ(xt) = qtk

[
(xt − µk)2

σ3
k

− 1

σk

]
, (20)

where the weight parameters are re-parametrized to αk
to avoid enforcing the constrain from equation 11 and
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qtk is equation 13. Using that the FIM is diagonal,
we can coordinate-wise normalize the gradient vectors.
This results in the equations

G x
αk

=
1
√

wk

T∑
t=1

(qtk −wk), (21)

G x
µk

=
1
√

wk

T∑
t=1

qtk

(
xt − µk

σ2
k

)
, (22)

G x
σk

=
1
√

wk

T∑
t=1

qtk

[
(xt − µk)2

σ3
k

− 1

σk

]
. (23)

The equations 21, 22 and 23 are the components of the
Fisher Vector. G x

αk
is a scalar, whereas G x

µk
and G x

σk

are D-dimensional vectors. The final Fisher Vector is
obtained by concatenating G x

αk
, G x

µk
and G x

σk
for k =

1, . . . ,K. It has a dimensionality of E = (2D+ 1)K[13,
10].

In our experiments, we use an improved Fisher Vec-
tor as proposed by Perronnin et al. [10]. We use both
the power and `2 normalization. The power normal-
ization is based on the idea that the Fisher Vector be-
comes sparser when the number of Gaussians increases.
The power normalization ”unsparsifies” the Fisher Vec-
tor. The `2 normalization is based on the idea this
image contains a background image-independent and
an image-dependent part. During the normalization is
the image-independent information approximately dis-
carded from the Fisher vector signature.

3.4 Data augmentation
In the Krizhevsky et al.[6] and Chatfield et al.[1] pa-
pers are methods described to reduce overfitting. These
methods are designed to artificially enlarge the used
dataset. The methods described are taking random
cropped patches and flipping. The first method works
by taking a random cropped patch from the original im-
age. The original image has a size of 256 × 256 pixels.
During training time is a random patch of 224 × 224
pixels extracted. Taking a 224× 224 sized patch means
there are 32 · 32 available patches and thus increasing
the dataset size by a factor 1,024. During test time is
always the center patch used. The second method is
simple. It flips the image on its horizontal axis. So,
the top becomes the bottom and vice versa. This in-
creases the dataset by a factor two. Combining the two
methods enlarges the dataset by a factor of 2,048.

4. EXPERIMENTS
In the experiments, we compare in the first part differ-
ent convolutional neural network configurations and in
the second part a convolutional neural network config-
uration with a Fisher Vector based neural network. For

the experiments, we use the Caffe framework as well as
some other libraries such as OpenCV, VLFeat, Boost
and Eigen.

4.1 Caffe Framework
For the experiments, we use the Caffe framework[4].
Caffe is a deep learning framework originally developed
by UC Berkeley. The framework is written in C++. A
model of a network does not need to be programmed,
but is defined in a separate text file.

We use the example definitions for the AlexNet. The
most of the code was already in Caffe included. How-
ever, we had modified Caffe to some extent for the use
data augmentation and Fisher vector.

4.2 Dataset
In the experiments we the ILSVRC-2012 (ImageNet)[12]
dataset. The ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) 2012 dataset is rather large. It is
a subset of the ImageNet database, which contains 15
million images. The images are of various sizes and are
divided in 1,000 categories. The trainings set contains
about 1,000 images of each category, which results in
about 1.28 million images. The validation set and test
set have respectively 50,000 and 150,000 images with
the same 1,000 categories.

Due to computation speed in the experiments with the
Fisher Vector, we used a sample for those experiments.
The sample is from the ILSVRC 2012 dataset and con-
tains 10,000 images for the trainings set and 1,000 for
validation set. The sample is obtained by shuffling (us-
ing the shuffle function from the C++ Standard Li-
brary) the data set and extracting 10,000 and 1,000
respectively from the trainings and validation set. The
categories in the dataset are numbered from 0 to 999.
The samples only contain images from the first 100 cat-
egories.

4.3 Experimental Setup
We will be doing two main experiments. In the first
setup, we will compare different configurations of the
convolutional neural network with feature pooling and
data augmentation. In the second setup, we will com-
pare one CNN configuration with Fisher Vector in com-
bination with a neural network. Each configuration in
both experiments is configured in a model. These mod-
els are described in section 4.4.

4.3.1 Pooling and Augmentation Experiments
In the first experiment, we compare different configu-
rations of feature pooling and data augmentation. We
use the AlexNet by Krizhevsky et al.[6] as a base for
our experiments. As of feature pooling methods, we
will use the three methods described earlier: average,
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maximum and stochastic pooling. We will use them
in combination with four different data augmentation
methods. The first method is using no augmentation.
Then we have flip and crop augmentation and finally a
combination of flip and crop augmentation. The dataset
will be artificially enlarged with these setups by respec-
tively zero, two, 1,024 and 2,048 times.

In these experiments, we will use the full ILSVRC-2012
dataset. However, the images will be resized to 256×256
pixels. In all configuration will the mean image of the
dataset be subtracted from the image. Each iterations
have a mini batch of 256 images. Table 1 gives an
overview of the settings used for training with the Caffe
framework.

Setting Value Description
Base learning rate 0.01 Learning rate at start

Learning policy step
Decrease learning rate
in steps

Gamma 0.1
Drop learning rate by
factor 10

Step size 100,000
Drop learning rate each
100,000 iterations

Max. iterations 450,000
Stop learning after
450,000 iterations

Momentum 0.9

Weight decay 0.0005
Rate that the weight at
nodes decay

Table 1: Overview settings used in Caffe for training in the
pooling and augmentation experiments

4.3.2 Fisher Vector Experiments
In the second experiment, we compare the convolutional
neural network with the Fisher Vector in combination
with a fully connected neural network. For the CNN we
use one of the setups from the other experiments: the
AlexNet network with maximum pooling and no data
augmentation. For the Fisher Vector setup, we imple-
mented the Fisher Vector in the Caffe framework using
the VLFeat[16] library. Our code is based on code from
Martin Hjelm on Github2. The Fisher Vector is com-
puted in the data (input) layer.

During training of the network, we use a pre-trained
Gaussian Mixture model. This model is trained on the
trainings dataset with an C++ implementation using
the VLFeat[16] library. Our code for this was also based
on the C++ implementation of Fisher Vector by Martin
Hjelm.

For these experiments, we use a sample of the ILSVRC-
2012 dataset. The sample of the training set has 10,000
images of 100 categories and the validation set has 1,000

2See: https://github.com/MartinHjelm/fishercaffe

images of the same 100 categories. Each iteration has
a mini batch with 16 images. We use this size, because
of the computation time of the Fisher Vectors and the
smaller dataset. During training we use the same set-
tings as in the other experiments as seen in Table 1.

4.4 Models
Each configuration or network in the experiments has
a model. The model is how the network is specified in
Caffe. The models can be divided in two main groups.
The first group contains models that are convolutional
neural networks and based on the AlexNet network.
The other group contains one model and is a fully con-
nected neural network in combination with the Fisher
Vector.

4.4.1 Pooling and Augmentation Experiments
The models used in the feature pooling and data aug-
mentation experiments are more or less all the same.
There are only some small differences in the settings of
some of the individual layers.

The models are based on the AlexNet network proposed
by AlexNet by Krizhevsky et al. [6] and has 12 layers.
These layers consist of one data layer, five convolutional,
three pooling and three fully connected layers. Table 2
gives an overview of the network.

Layer Contains Size output
Data Data augment. 3, 224, 224
Convolutional 1 ReLU, LRN 96, 54, 54
Pooling 1 96, 27, 27
Convolutional 2 ReLU, LRN 256, 27, 27
Pooling 2 256, 13, 13
Convolutional 3 ReLU 384, 13, 13
Convolutional 4 ReLU 384, 13, 13
Convolutional 5 ReLU 384, 13, 13
Pooling 5 384, 6, 6
Fully connected 6 ReLU, dropout 4,096
Fully connected 7 ReLU, dropout 4,096
Fully connected 8 1,000

Table 2: Overview of the network used in the pooling and
augmentation experiments. First column is the name and
type of the layer, second column is other things that layer
contains (ReLU is Rectified-Linear unit and LRN is Local
Response Normalization) and the third column is the size
of the output of the layer (convolutional and pooling layers:
number of, height and width of feature maps).

The first layer in the network is a data layer. This
is the input of the network. It loads the images into
memory and applies the data augmentation depending
on the configuration. The necessary data augmentation
is done based on a probability for each method. When
crop augmentation is applied, then the height and width
offset randomly chosen. In our experiments, we crop
the images to 224 × 224 pixels, so the crop augmenta-
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tion chooses one of the 1,024 possible offset combina-
tions. When crop augmentation is not applied, then a
centered crop of the image is used. With flip augmen-
tation, the order how the image is copied to the output
changes. When it is applied, then we start copying the
bottom row of pixels first and then work our way to the
top row. When it is not applied, we work from the top
to the bottom. Flip augmentation has a probability of
0.5 to be applied.

After the data layer follow two convolutional layer with
each a feature pooling layer. These are followed by two
convolutional layers without pooling and finally a con-
volutional layer with feature pooling. Table 3 gives an
overview of the configuration of the convolutional and
pooling layers. The kernel size is the size of the kernel,
the stride is the intervals at which to apply the kernel or
filter to the input, padding is number of pixels to add
to each side of the input and group is the number of
groups the input of output the number of feature maps
are separated. The ith output group channels will be
only connected to the ith input group. All the convo-
lutional layers and all but one of the fully connected
layers use Rectified-Linear unit. The first two convolu-
tional layers have local response normalization.

Layer Configuration
Convolutional 1 Kernel size: 11 - Stride 4
Pooling 1 Kernel size 3 - Stride 2
Convolutional 2 Kernel size 5 - Group 2 - Padding 2
Pooling 2 Kernel size 3 - Stride 2
Convolutional 3 Kernel size 3 - Padding 1
Convolutional 4 Kernel size 3 - Group 2 - Padding 1
Convolutional 5 Kernel size 3 - Group 2 - Padding 1
Pooling 5 Kernel size 3 - Stride 2

Table 3: Configuration of the convolutional and pooling
layers

At the end of the network are three fully connected lay-
ers. Two of them use dropout. Dropout is a technique
to reduce overfitting. We use the strategy proposed in
the paper by Krizhevsky et al. [6]. It sets the output of
each neuron to zero with a probability of 0.5. By doing
this the amount of data is halved and so also the com-
putation time of following layers reduced. During test
time no data is dropped, but the values of all neurons
is multiplied by 0.5.
The last fully connected layer has 1,000 outputs. This
is the number of categories in the dataset and in used
to determine the accuracy of the network.

4.4.2 Fisher Vector Experiments
As described in the experimental setup, we have two
setups for the Fisher Vector experiments. This means
that we have two models. The first model for the con-

volutional neural network is basically the same as the
models described above. See Section 4.4.1 for more de-
tails. The only difference during these experiments is
that the input image size is different. This results in
different output sizes of the layers. An overview of the
new output sizes is shown in Table 4.

Layer Size output
Data 3, 128, 128
Convolutional 1 96, 30, 30
Pooling 1 96, 15, 15
Convolutional 2 256, 15, 15
Pooling 2 256, 7, 7
Convolutional 3 384, 7, 7
Convolutional 4 384, 7, 7
Convolutional 5 384, 7, 7
Pooling 5 384, 3, 3
Fully connected 6 4,096
Fully connected 7 4,096
Fully connected 8 1000

Table 4: Overview of the CNN network used in the Fisher
Vector experiments. First column is the name and type of
the layer and the second column is the size of the output
of the layer (convolutional and pooling layers: number of,
height and width of feature maps).

The second model is the model for the Fisher Vector
network. This network has four layers. All but the
first layer is fully connected layers. The Fisher Vector
is calculated in the data transformer of the data layer.
This is also where data augmentation is done in the
pooling and augmentation experiments. An overview
of the network is shown in Table 5

Layer Contains Size output
Data Fisher Vector 1, 1, 40,960
Fully connected 1 ReLU, dropout 4,096
Fully connected 2 ReLU, dropout 4,096
Fully connected 3 100

Table 5: Overview of the network used in the pooling and
augmentation experiments. First column is the name and
type of the layer, second column is other things that layer
contains and the third column is the size of the output of
the layer.

The first layer in the network is the data layer. In this
layer are the images loaded into memory. Also, the
Fisher Vector of the image computed is in this layer.
This is done as described in Section 3.3. The output is
a Fisher Vector for each of the images in the mini batch.

The data layer is followed by three fully connected lay-
ers. The first of these layers have ReLU and dropout.
The last layer has 100 outputs. Each of these outputs
represent one of the possible categories.

4.5 Accuracy
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In all of the experiments we work with the image classi-
fication problem that we introduced in the introduction.
In this problem, we want to classify the topic or cate-
gory of the image. So, the network gets an image as
input and returns a vector or probabilities of each pos-
sible category as output. In our experiments this vector
has a size of 1,000 and 100 for respectively the pooling
and augmentation experiments and Fisher Vector ex-
periments.

Based on these probabilities we can compute the ac-
curacy of the network. A widely-used method are the
top-1 and top-5 error rates. We will also use these mea-
sures. The top-1 error rate is the number of incorrectly
classified images divided by the total number of clas-
sified images. The top-5 error rate is the number of
incorrectly classified images, where the category of the
image was not part of the five categories with the high-
est probabilities, divided by the total number of classi-
fied images.

The accuracy of the networks is measured during on
the validation set. When the training is finished, the
snapshots of the model weights at different number of
training iterations are tested on the validation. Caffe
has built-in functionality to do this. The network is run
for 1,000 iterations of the validation set. Each iteration
has a mini batch of 256 images and at the end returns a
top-1 and top-5 accuracy. At the end the final accuracy
is computed by taking the mean of respectively all top-1
and top-5 accuracies. The error rates can be computed
as 100 minus the accuracy.

5. RESULTS
In this section are the results of the experiments de-
scribed in the last section. The results are averages over
1,000 iterations an are computed over the validation set
of the datasets described in Section 4.2.

5.1 Pooling and Augmentation Experiments
The results of the pooling and augmentation experi-
ments are summarized in Table 6. These results are
the error rates on the validation set of the ILSVRC-
2012 dataset and are averaged over 1,000 iterations of
256 images. The table shows for each configuration the
top-1 and top-5 best (lowest) error rate. Between paren-
thesis is the iteration shown at which this error rate
is achieved. In this table are average, maximum and
stochastic pooling shortened as respectively AP, MP
and SP. The data augmentation methods are showed
as DA 0, DA C DA F and DA CF. This means respec-
tively for no data augmentation, crop augmentation,
flip augmentation and the combination of crop and flip
augmentation.

Configuration Top-1 Top-5

AP DA 0
46.9594
(450k)

23.1551
(450k)

AP DA C
47.1793
(450k)

23.3125
(450k)

AP DA F
46.1410
(400k)

23.1031
(300k)

AP DA CF
46.7117
(450k)

23.1844
(450k)

MP DA 0
46.2633
(450k)

22.5355
(450k)

MP DA C
46.1891
(400k)

22.5121
(450k)

MP DA F
46.0070
(400k)

22.1965
(450k)

MP DA CF
45.7270
(400k)

21.8363
(450k)

SP DA 0
48.2676
(450k)

24.0590
(450k)

SP DA C
48.1926
(450k)

24.0945
(450k)

SP DA F
48.5410
(450k)

24.3672
(450k)

SP DA CF
48.0168
(450k)

24.0461
(400k)

Table 6: Overview of the best error rates (in %) of the
different configurations. Each configuration has a top-1 and
top-5 error rate. Between parenthesis is the iteration shown
at which this error rate is achieved.

In the results, we can see that all top-5 error rates are
always lower than the top-1 error rates. We can also see
that the most best error rates are at 450 thousand iter-
ations. However, some lowest error rates are at 400 or
even 300 thousand iterations. The configurations that
have an error rate not at 450 thousand iterations have
that mostly for the top-1. Exceptions are AP DA F and
SP DA CF.

When we look at the data augmentation methods per
feature pooling methods, then we can see that the dif-
ferences between the data augmentation methods are
minor. The difference between the largest and smallest
error rate are 1.0383%, 0.5363% and 0.5242% for top-
1 and 0.2094%, 0.6992% and 0.3211% for respectively
average, maximum and stochastic pooling. In average
pooling the configuration with flip augmentation per-
forms best in the top-1 as well the top-5 error rates.
The worst here is the configuration with crop augmen-
tation. In both maximum and stochastic pooling does
CF augmentation perform the best. In maximum pool-
ing no augmentation and in stochastic pooling flip aug-
mentation perform the worst.

When we look at the different feature pooling methods
we can see that one pooling methods performs better
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than another. Stochastic pooling performs the worst in
the experiments and maximum pooling the best. The
difference between the best performing configuration for
stochastic and average pooling 1.3051% for top-1 and
0.9430% for top-5. For average and maximum pooling,
it is 0.9847% for top-1 and 1.2981% for top-5.

5.2 Fisher Vector Experiments
Unfortunately, we do not have any results for the Fisher
Vector experiments. Despite many attempts and dif-
ferent approaches, we were not able to get the Fisher
Vector neural network working and learning. Because
of that, we also did not run that CNN configuration in
this experiments. More details can be found in Section
7, the discussion.

6. CONCLUSION
Some papers like to show their lowest error rate based
on one iteration. They do a number of iterations on
the test or validation set and show to lowest error rate
achieved. This is however not an accurate measure of
the performance of the method or network. Our results
as stated earlier are an average over 1000 iterations on
the validation set. This is a more accurate measure than
taking just one iteration.

As described in the introduction, in Section 1, we com-
pared several configurations of the AlexNet convolu-
tional neural network and we compared one of these
configurations with the Fisher Vector in combination
with a neural network. In the first part of the experi-
ments we compared feature pooling methods maximum,
average and stochastic pooling as well as data augmen-
tation as crop and flip augmentation. So, which of the
configurations we used performs best? As in which has
the lowest top-1 and top-5 error rate. And how performs
the Fisher Vector in combination with a neural network
compared to a convolutional neural network setup?

Unfortunately, we cannot answer the question. We do
not have any results for the Fisher Vector neural net-
work since we could not get it working. More about this
is explained in the discussion in Section 7.

In the results in the last section, Section 5, we can see
that all results are quite close together. There are some
conclusions we can and cannot make. The data augmen-
tation methods are not decisive in which configuration
works best. The configurations without augmentation
were never the best, but also never the worst. Both
the crop and flip augmentation were once the worst
performing augmentation, but in the flip augmentation
performed best with the average augmentation. We can
conclude that the combination crop and flip augmenta-
tion performs better than crop augmentation alone.

We can also conclude that maximum pooling performs
best from all three feature pooling methods. The max-
imum pooling with crop and flip augmentation has an
error rate of over 2% lower than all stochastic pooling
methods configurations. All average pooling methods
have a lower error rate stochastic pooling. So, from
these pooling methods stochastic pooling performs the
worst under these conditions.

To summarise this, we do not have any conclusions on
the Fisher Vector neural network compared to a convo-
lutional neural network. In the other experiments max-
imum pooling performs better then all configurations
of average and stochastic pooling. The combination of
crop and flip augmentation performs in all experiments
better than just crop augmentation.

As of future work, more types of data augmentation
could be compared. For example changing the bright-
nesses of the different channels of the image or using
more transformations on the image such as stretching.
Also, the effect of even longer learning could be re-
searched. How would the comparison be if we had done
one million or more iterations instead of the 450 thou-
sand now? In this work, we only used the AlexNet
CNN. It would be interesting to compare different con-
volutional neural networks and compare who performs
best in which situation.

7. DISCUSSION
As stated earlier, we do not have any results for the
Fisher Vector experiments. In the project for this work
where many setbacks and challenges. This section will
give an overview of some of them, some possible rea-
sons why the Fisher Vector experiments did not work
and ends with some future work how it possibly could
work.

At first the pooling and data augmentation experiments.
For the data augmentation in these experiments, we
first tried to implement them in a custom layer in Caffe.
However, for some reason the network did not learn and
was stuck on its initial accuracy. We solved this by us-
ing an implementation where the data augmentation
was done in the data transformer of Caffe. This data
transformer is used in the data layer of the network.

Our implementation of the Fisher Vector ended up not
working at all. We tried several ways of implementing it
as well as several experimental setups. The Fisher Vec-
tor generation consists of two parts: the generation of
the GMM and the calculation of the actual FV based on
that GMM. At first we created a custom layer in Caffe
that calculates the FV with the GMM read from an
external file. The GMM was generated in an external
piece of program, which did work. This approach did
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not work and was very slow. So, in the second attempt
we build the generation of the GMM into the FV layer.
However, this is not what we want. In this approach
a GMM is created for each mini batch. Also during
test time, which means that we train the GMM for a
mini batch. We do not want to train at test time.So,
we choose to use generate the GMM separate from the
Caffe framework.

We tried a few more things with the Fisher Vector layer,
but could not get it to work. Our final attempt was to
incorporate the Fisher Vector calculation into the data
transformer. We choose to try this, because the data
augmentation in the data transformer did work.

For the Fisher Vector we also tried several experimen-
tal setups. The generation of the GMM as well as the
Fisher Vector calculation was slow. At first we used the
full ILSVRC-2012 dataset. Due to memory issues and
calculation time, we could not generate a GMM of the
full dataset. We solved this by generating the GMM of
a small sample of the dataset, but the experiments did
not work. Also, the sample was with 1,280 images too
small to represent the 1.28 million image dataset. Next
we resized the full ILSVRC-2012 dataset to 128 × 128
pixels images.

We could now generate a GMM of a larger sample, but
not the full dataset. In our last setup, we generated a
sample as described in Section 4.2 of 10,000 and 1,000
images for respectively the training and validation set.
The size of this sample is small enough that we could
generate a GMM for the full training set. Also the net-
work would require less training, because of the smaller
dataset and fewer number of categories. However, also
this last attempt did not work.

There are several reasons possible why the first attempt
of the data augmentation and Fisher Vector implemen-
tations did not work. First of all, in the custom Caffe
layers we only implemented the forward step and not
the backward step. Having not implemented the back-
ward step could be the reason why the layers did not
work. The backward steps are used to calculate the
gradient and eventually the loss of the network. In our
case the gradient and loss might not have been correct
and causing the network not to learn. Another possi-
ble reason is that there might be an error in the code
we wrote. Although we used code from another source
and a library for the GMM and FV, we might made an
error. A possibility is also that something in Caffe does
not work together well with our code. However, this is
hard to determine.

In the final Fisher Vector experiments, could also the
dataset be the cause of it not learning. We used 100

categories with each 100 images. The sample might be
too small to make the network learning with this num-
ber of categories.

The papers by Perronnin et al.[9] and Chatfield et al.[1]
had a similar setup with the Fisher Vector in combi-
nation with a neural network as ours. However, both
works did not use the Caffe framework. The source code
of Chatfield et al. is online available, but it is written
in Matlab a so not usable for us.

As of future work our code might work by changing the
dataset. We used a sample that might be too small with
this number of categories. So, maybe by either reducing
the number of categories or increasing the number of
images per category, the network combining the Fisher
Vector and neural network starts learning.
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